Roll No.

B. Tech. Vth Semester (Ms

5E3125

B. Tech. Vth Semester (Main/Back) Examination, Dec.-2010/Jan.-2011 Electrical Engineering

5EE3 Control Systems (Common With EX)

Time: 3 Hours

Maximum Marks: 80

[Total No. of Pages: 4

Min. Passing Marks: 24

Instructions to Candidates:

Attempt any five questions. All questions carry equal marks.

- 1. a) Explain the concept of Open Loop and Closed Loop Control System, with suitable examples. (6)
 - b) Explain Missile launching and guidance system. (6)
 - c) What are the applications of control theory in engineering and Non-engineering fields? Explain. (4)

OR

- 2. a) What is Servo Mechanism? Explain a position control system. (6)
 - b) Explain Rocket Autopilot system. (6)
 - c) What are the elements of Basic Control System? Explain. (4)
- 3. a) Obtain the Transfer Function and Block Diagram of Armature-Controlled DC motor as shown in Figure 1.

Figure - 1

- b) For the system shown in Figure 2, Evaluate the close Loop Transfer function, when the input R is
 - i) at station I
 - ii) at station II. (8)

OR

4. a) Obtain the Overall Transfer Function C/R from the signal flow graph shown in Figure 3. (8)

Figure - 3

Obtain the transfer function X(s)/E(s) for the Electro-mechanical system, shown **b**) (8) in Figure. 4.

- Figure 4
- What is an First order & Second order system? Compare them. Also find the 5. a) response of First Order system to the unit-step input. **(6)**
 - Explain the types of Feedback Control System. (4) **b**)
 - Explain the steady state error with following types of inputs c)
 - i) Unit-Step;
- (ii) Unit-Ramp;
- (iii) Unit-parabolic.
- **(6)**

OR

- 6. Explain: a)
 - Derivative Error Compensation and 1)
 - Derivative Output Compensation.

(6)

- A feedback system employing output-rate damping is shown **a** figure 5.
 - In the absence of Derivative Feedback (K₀=0), determine the damping i) factor and natural frequency of the system. What is the steady-state error resulting from unit-ramp input.
 - Determine the derivative feedback Constant (K_n), which will increase the ii) damping factor of the system to 0.6. What is the steady-state error resulting from unit-ramp input with this setting of the derivate feedback (10)constant?

Figure - 5

(3)

[Contd....

7.	a)	A unity negative feedback control system has an open loop transfer function
		consisting of two Poles, two zeros and a variable gain K. The zeros are
		located at -2 & -1; and the poles at 0.1 & +1. Using Routh-Stability Criterion,
		determine the range of values of K for which the closed loop system has 0,1
		or 2 poles in the right-half plane. (6)

b) / A unity feedback control system has an open loop transfer function of

$$G(s) = \frac{K(s+4/3)}{s^2(s+12)}$$

Plot root locus. Find the value of K for which all the roots are equal. Also find the values of these roots.

c) By using Routh-Criterion, show that the system having following characteristic equation is stable or not.

$$s^6 + 2s^5 + 8s^4 + 12s^3 + 20s^2 + 16s + 16 = 0$$
 (4)

OR

8. a) Sketch the Nyquist plot and determine there from the stability of the following open loop transfer function of unity feedback control systems.

i)
$$_{s}^{GH(s)=\frac{K(s+2)}{s^2(s+1)}}$$
 ; ii) $_{s}^{GH(s)=\frac{K}{s(s^2+s+4)}}$ (12)

- b) Define following terms:
 - i) Gain and Phase Margin;
 - ii) Stability of System. (4)
- 9. Write short notes on followings (Any Two):
 - i) Lag Networks;
 - ii) PID Controllers;

OR

- 10. Write short notes on followings (Any Two):
 - i) Cascade and Feed back Compensation;
 - ii) Tuning of PID Controllers;
 - iii) Lead Compensation. (16)