	-						
		Roll No [Tot	al No. of Pages 4				
3E1495		3E1495	a .				
14		B.Tech. IIIrd Semester (Main/Back) Examinatio	n, Feb 2011				
因		Electronics & Communication Engineering					
C		3EC5 Electronic Materials and Processes					
Time: 3 Hours Maximum Marks: 80							
		Min. Pa	ssing Marks: 24				
Instri	ucti	ions to Candidates:					
(diag	empt overall five questions, selecting one question from ea grams must be shown wherever necessary. Any data you ably be assumed and stated clearly.					
		Unit - I					
l. a	a)	Prove the Clausius - Mosotti relation	(8)				
	0	$\frac{\in_r^* - 1}{\in_r^* + 2} = \frac{1}{3 \in_0} N(\alpha_e + \alpha_i)$					
		approximate this relation at IR (infra red) region.	· ·				
1)	Explain the interfacial polarization and its dynamic response. spectra and dipolar relaxation.	Draw its frequency (8)				
		OR					
а	a)	Derive the temperature - independent condition.	(4)				
B		$\frac{1}{L} \frac{dL}{dT} + \frac{1}{C} \frac{dC}{dT} = 0$					
		For a resonant tank circuit.	x *				
t	o)	For a solid contains 5×10^{28} atoms/m ³ with polarizability Find the strength ratio of internal field to external applie distribution.					
C	:)	Draw the polarization with applied field for	(3+3=6)				

i)

ii)

Ferro Electric and

Antiferro Electric Materials.

Unit - II

- 2. a) Draw the susceptibility with temperature for Dia, Para, ferro, ferri and antiferromagnetic materials. (5×2=10)
 - b) The Magnetic field strength in a piece of copper is 10⁶ ampere m⁻¹. Given that the Magnetic susceptibility of copper is -0.5×10⁻⁵, find the flux density and the Magnetization in the copper. (6)

OR

a) Define

 $(3 \times 4 = 12)$

- i) initial permeability
- ii) remenant magnetization
- iii) coercive force
- iv) saturation magnetization

On BH loop for a soft magnetic material. Compare their values from a Hard magnetic material.

b) Explain the Domain theory, Domain growth under magnetization and domain walls for a ferromagnetic materials. (4)

Unit - III

3. a) Write three difference for each

 $(3 \times 4 = 12)$

- i) Degenerate and Non-degenerate semiconductor material.
- ii) GaAs and Si semiconductor.
- iii) EGS (Electronic Grade Silicon) and MGS (Mechanical Grade Silicon).
- iv) Direct and Indirect Band gap semiconductors.
- b) Derive the continuity equation for P-type semiconductor that is illuminated and open-circuit. (4)

OR

a) A compound semiconductor is given by $\begin{pmatrix} Al & Ga & As \\ 1-x & x & y \end{pmatrix}$. $\begin{pmatrix} P \\ 1-y \end{pmatrix}$ then find the

value of x & y for give the effective Bandgap Eg = 3.8ev. Given that Bandgap of $AlAs \rightarrow 3.8 \ ev \ GaAs \rightarrow 1.4 \ ev$

 $P \rightarrow 4.2 \ ev.$

Also find the corresponding wavelength for which it responds maximum.

(2+6=8)

	b)	12	te four differences between Type I and Type II semiconductors of BCC theory of superconductivity.	or. Write the
	ы		state the conditions for which above phenomena applicable	
		iii)	Drift conduction.	
		ii)	Diffusion conduction	
		i)	Hopping conduction	
	a)	Def	ine the following conduction phenomena	$(3 \times 3 = 9)$
	400		OR	
		tor	metals, draw $\sigma(w)$ with frequency.	
			$= \frac{\sigma_0}{1 + W^2 \tau^2}$	
	-,			(6)
	b)		ive the relation and	(6)
		v)	Drift velocity for electrons	
		iv)	Scattering points	
		ii) iii)	Relaxation time Fermi velocity	
		i)	Mean free path	
4.	a)	Def		$(5 \times 2 = 10)$
			Unit - IV	
			in a zone refining process.	
		iv)	no. of cycles of zone refine	
		iii)	zone cross section / diameter of the ingot	
		ii)	pulling / zone refining speed	
		1)	temperature gradient	

b) How control or, depends the purity / defects on

 $(4 \times 2 = 8)$

b) Calculate the value of resistors

(2+2+4=8)

having $n_i = 1.5 \times 10^{10} / \text{cm}^3$

$$K_n = 1400 \ H_p = 300 \ \frac{M^2 \cdot \text{volt}}{\text{Secs.}}$$

OR

Write short notes on any four:

 $(4 \times 4 = 16)$

- a) SOI
- b) Ferrite/hexaferrite core with silicon doping
- c) Laminated transformer core
- d) Double layer PCB
- e) Variable inductors.