2		3	11107	
5	200		E1492	
B. Tech. (Sem. III) (Main & Back) Examination, January - 2013 Electronics & Comm. (Common for Main & Back of 3EC2, 3AI2, 3EI2 & 3EC2 Electronics Devices & Circuits				
ne : 3 l	Hours]			[Total Marks : [Min. Passing Marks :
of fol	s of quantities lowing supporting d in form No. 2	s used/ co		ust be stated clearly. during examination. Nil
*				
n N		UN	IT - I	
	State the ma Explain why across an ope	a contact	difference of	equation and in words f potential must develor on.
e ¹⁰	9		n n	12
(b)]	Explain the p	process of c	conductivity	modulation.

(a) What is diffusion? Explain it with Einstein relation and derive continuity equation.

(b) Derive an expression for diffusion and drift currents.

8

UNIT - II

- A diode whose internal resistance is 35Ω is to supply power (a) 2 to a $1k\Omega$ load from a 220V (rms) supply. Calculate :
 - Peak load current (i)
 - D.C. load current (ii)
 - A.C. load current (iii)
 - Diode voltage (iv)
 - Total input power to the circuit and (v)
 - Percentage regulation from no load to given load. (vi)

10

Draw the characteristics of UJT and explain its working. (b)

6

OR

Draw the output waveform for the circuit given. (a) 2

6

A full wave rectifier is to be designed to produce a peak output voltage 12 V and delivers a current of 120 mA to the (b) load. It is required to restrict the ripple of not more than 5%. An Input line voltage is 120 V (rms), 60 Hz is available.

10

UNIT - III

Write the Ebers and Moll equations. Sketch the circuit model, (a) 3 which satisfies these equations.

10

[Contd...

(b) Define stabilization techniques and compensation techniques.

OR

3 (a) Discuss thermal runway and define thermal resistance. What is the condition for thermal stability? - Explain.

8

(b) Explain base width modulation (the early effect) with the aid of plots of potential and minority concentration throughout the base region.

8

UNIT - IV

4 (a) The n-channel enhancement mode MOSFET of figure is characterized by $V_T=4V$ and $I_{Don}=10~mA$. Assume negligible gate current, $R_1=50~K\Omega,~R_2=0.4M\Omega,~R_s=0,~R_D=2~K\Omega$ and $V_{DD}=15~V$. Find (i) V_{GSQ} (ii) I_{OQ} and (iii) V_{DSQ} .

8

(b) Define the working of FET as voltage varible resistor.

Ö

OR . 1

[Contd...

4 (a) Sketch the circuit of CS amplifier. Derive the expression for the voltage gain at low frequencies. What is the maximum value of $A_{\rm v}$?

10

(b) Draw the biasing circuit for a JFET or a depletion type MOSFET. Explain under what circumstances each of these two arrangements should be used.

6

UNIT - V

5 (a) Draw a Darlington emitter follower and explain, why the input impedance is higher than that of a single stage emitter follower.

10

(b) State Miller's theorem with the aid of a circuit diagram. Repeat for the dual of Miller's theorem.

6

OR

5 (a) Derive the expression for the CE short circuit current gain A_i as a function of frequency.

8

(b) Define f_{β} and f_{T} . What is the relationship between f_{β} and f_{T} ?

8