B. Tech Second Year: 3rd Semester Engineering Mathematics-3, Jan., 2012

(FOR 3EC1 BRANCH OF ENGINEERING) Times: 3 Hours Min. Passing Marks: 24 Total Marks: 80 (Unit-T) OR (a) Find the Laplace transform of $\sin \sqrt{t}$. Hence find the Laplace transform of $\frac{\cos\sqrt{t}}{\sqrt{\epsilon}}$. [8] **(b)** Solve $\frac{\partial \theta}{\partial t} = k \frac{\partial^2 \theta}{\partial x^2}, x > 0, t > 0$ (b) Solve: $\frac{d^2y}{dt^2} + 2\frac{dy}{dt} + y = t$; given that y(0) = -3, y(1) (Unit-'IV') Find the inverse Laplace transform with the help of convolution theorem of $\frac{s}{(s^2+a^2)^2}$. [8] examine the nature of the function **(b)** Solve: $\frac{\partial u}{\partial t} = 2 \frac{\partial^2 u}{\partial x^2}$ where u = u(x, t). [8] B.C.: u(0, t) = 0 = u(5, t) and $u(x, 0) = 10 \sin 4\pi x$. **Unit-II**' Find the Fourier Series for the function defined as: including the origin. 2. -1, for $-\pi \le x < 0$ $f(x) = 0, \quad \text{for} \quad x = 0$ 1, \quad \text{for} \quad 0 < x \le \pi terms of z. OR

[8]

Hence, prove that $\frac{\pi}{4} = 1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \dots$ [8]

- (b) For z transform prove that $z(nu_u) = -z \frac{d}{dz} z(u_n)$ with the help of this find the z-transform of ne-an $n \ge 0$. [8]
- (a) Obtain the constant term and the coefficients of first sine and cosine terms in the Fourier expansion of y as given in the following table: x 0 1 2 3 4 5

	_	. 660	3446		1000 TO 100		
	<u>y</u>	9	18	24	28	26	20
(b)	Fin	Find the inverse z-transform					

$$f(z) = \frac{1}{(z-3)(z-2)};$$
If ROC is (i) $|z| < 2$, (ii) $2 < |z| < 3$, (iii) $|z| > 3$. [8]

Unit—III?

- Find the Fourier cosine transform of e^{-x^2} .
 - Solve $\frac{\partial V}{\partial t} = \frac{\partial^2 V}{\partial x^2}$ if (i) $V_x(0, t) = 0$, (ii) V(x, 0) = 0 $\{x, 0 \le x < 1\}$ x > 1 and (iii) V(x, t) is bounded for x > 0, 181

- (a) Find f(x) if its Fourier cosine transform is $\frac{1}{1+s^2}$.
- with B.C.: $\theta = \theta_0$ or when x = 0, t > 0 with I.C.: $\theta = 0$ or when t = 0, x > 0. [8]
- (a) Define analytic function and derive Cauchy-Riemann conditions for analytic function and

$$f(z) = \frac{x^2y^5(x+iy)}{x^4+y^{10}}, z \neq 0$$
, $f(0) = 0$ in the region

- **(b)** If $(u-v) = (x-y)(x^2 + 4xy + y^2)$ and f(z) = u + ivis an analytic function of z = x + iy find f(z) in [8]
- Find the bilinear transform action which maps the points z = 1, i, -1 respectively on to the points w = i, 0, -i. For this transformation find the image of concentric circles |z| = r, (r > 1).
- (b) Verify Cauchy's theorem for the function $z^3 iz^2 -$ 5z + 2i if C is the circle |z - 1| = 2. [8]

(Unit-'V')

5. (a) Obtain expansion for $\frac{z^2-4}{(z+1)(z+4)}$ which are valid, for the regions:

(i)
$$|z| \le 1$$
, (ii) $1 \le |z| \le 4$ and (iii) $|z| > 4$. [8]

(b) Evaluate $\int_{0}^{\infty} \frac{1-\cos x}{x^2} dx$ by contour integration. [8]

OR

- (a) Evaluate $\int_{C} \frac{z^2 e^{zt}}{z^2 + 1} dz$ where C is the circle |z| = 2
- and t is a quantity independent of z. (b) Use method of contour integration to evaluate
 - $\int_{0}^{2\pi} \frac{d\theta}{1 + a^2 2\cos\theta}, 0 < a < 1.$ [8]

[8]