	Roll No.	Total No of Pages: 4
)3		6E3203
6E3203	B. Tech. VI Sem. (1	Main & Back) Exam., May/June-2014
E 3	I.	omputer Engineering
9	6CS3	Theory of Computation
		Common to CS & IT
Γime: 3	Hours	Maximum Marks: 80
		Min. Passing Marks: 24
nstructi	ions to Candidates:-	
nstructi	Attempt any five questic Questions carry equal	ons, selecting one question from each unit. Al marks. Schematic diagrams must be shown data you feel missing may suitably be assumed
nstructi	Attempt any five question Questions carry equal wherever necessary. Any and stated clearly.	o ns, selecting one question from each unit . Al marks. Schematic diagrams must be shown
nstructi	Attempt any five questice Questions carry equal wherever necessary. Any and stated clearly. Units of quantities used/	ons, selecting one question from each unit. Al marks. Schematic diagrams must be shown data you feel missing may suitably be assumed

UNIT-I

Q.1 (a) Explain the basic concepts of finite state systems. Also explain the terms trap state, final state, non final state, & Initial state. [16]

 $\underline{\mathbf{OR}}$

Q.1 (a) Minimize the following finite automata. Also write procedure for minimization. [10]

(b) Explain difference between deterministic and non deterministic finite Automata.

[6]

UNIT-II

Q.2 (a) State and explain pumping lemma for regular sets. Prove that following expression is regular or not regular using pumping lemma.

$$L = \{a^n b^m : n \le m + 3\}$$
 [8]

(b) Explain the concept of Regular sets and Regular grammar with the help of an example. [8]

<u>OR</u>

- Q.2 (a) Write down the closure properties of regular languages. Also describe Pigeon hole principle.
 - (b) Write down the regular expression and finite Automata / Transition Diagram for following languages over alphabets $\Sigma = \{a, b\}$
 - (i) Set of string that starts with "aa" and end with "ab".

(ii)Set of string that starts with "a" and ends with "b" and having at least one string of "abab". [4x2]**UNIT-III** Q.3 (a) What is push down automata? Design a push down automata for language $L = \{a^n b^n : \ge 1\}$, also check the acceptability of string "a aa b bb a b". [10] Explain Greiback normal form in detail. (b) [6] <u>OR</u> Explain context free grammar and find the context free grammar for the Q.3 (a) following languages. (i) $L = \{a^n b^m : n \ge 1\}$ [6] (ii) $L = \{a^n b^m : n \le m + 1\}$ [5] (iii) $L = \{a^n b^n : n > 0\}$ [5] UNIT-IV Q.4 (a) Explain Turing Machine. Also explain the difference between Multitape and Multidimensional Turing Machine. [10]Explain Rice's theorems in detail. (b) [6] <u>OR</u> Design a Turing Machine that computes 2's complement of the given string over the $\Sigma = \{0, 1\}$. Also show the output of the machine for string "00000" [10] Write a short note on Universal Turing Machine in detail. [6]

Page 3 of 4

[11200]

Q.4 (a)

(b)

[6E3203]

UNIT-V

Q.5	(a)	Explain context free grammar. Also differentiate it from context sensiti	ve		
		grammar. [[8]		
	(b)	Write short note on Chomsky Hierarchy of Languages in detail.	[8]		
<u>OR</u>					
Q.5	(a)	State and explain the linear bounded Automata. Also describe the organization	of		
		linear bounded Automata. [1	0]		
	(b)	Explain the properties of Context – Sensitive languages.	[6]		