	Ro	oll No	Total No	of Pages: 4
(7	6E	3202	
	6E3202 B.Tech VI Semester (Main/Back) Exam. May, 2012 Computer Enginering 6CS2 Design and Analysis of Algorithms			
ć	3 C	Computer Enginering		**.*
	6	CS2 Design and Analysis	of Algorithms	an di
	30-30-0	Common to CS & IT		
Tiı	me:3	Hours	Maximum 1	Marks: 80
	***	e e	Min. Passing I	Marks: 24
Ins		ns to Candidates:		2
102	19	ttempt any five questions, sele		
	13	ll Question carry equal marks.		
		herever necessary. Any data yo	ou feel missing suitab	ly be assumed
		nd stated clearly.	ted west be stated al	anh.
100 100		nits of quantities used/calcula		部
		lowing supporting material is p form No. 205)	ermitted during exam	manon. (wich-
	neu III		TAT:I	8
1		Nil	Nil	
e,	2	Unit-	-1	
1	(a)	Describe the various types of n	otations with example	? 8
	(b)	Solve the following recurrence	relations and find the	ir complexities
	70	using master method	a .	×
		(i) $T(n) = 2T(\sqrt{n}) + \log_2 n$		4
		(ii) $T(n) = 4T(n/2) + n^2$	a s	4
		Or		
1	(a)	Find the optimal merge pattern	n for the given values 3	35, 15,20,40,10
		•		8
S.	7***	1 21 21 21 21 21 21 21 21 21 21 21 21 21		
##	(b)	Illustrate the operation to const ues 10,20,30,1,2,3,4,11,21,31		ee for given val- 8
		ues 10,20,30,1,2,3,7,11,21,31	· • · · · · · · · · · · · · · · · · · ·	
6E	3202	1		[Contd

Total No. of Pages: 4

Unit - II

2 (a) Find optimal solution for given data by Knapsack problem

Consider
$$n = 5$$
, $(W1, W2, W3, W4, W5) = (5,4,6,2,1)$

$$(P1, P2, P3, P4, P5) = (5, 2, 2, 4, 5)$$
 and $M = 12$

(b) Explain the matrix chain multiplication algorithm.

6

Or

2. (a) Solve the TSP problem for the following cost matrix

8

(b) Find a Hamiltonian circuit using back tracking method for the following graph G = (V,E)

Unit - III

- 3 (a) Explain the prefix function for a string with an example and write KMP matcher algorithm? 8
 - (b) Write short notes on the following:

(i) Quadratic assignment problem.

4

(ii) Boyer Moore algorithm.

4

Or many solary springed the

- 3. (a) Describe Naive string matching alglorithm in detail? 8
 - (b) The Rabin-Karp Algorithm is suitable for string pattern matching. Justify the answer.

 8.

Unit - IV

- 4. (a) Explain the Las Vegas Algorithm with an example? 8
 - (b) Construct the Min-Cut for the following network.

8

Or

(a) Find the maximum flow for the following flow network using ford-fulkerson method.

	(b)	Explain the flow networks and Augmenting paths?	8		
		Unit - V	8		
	a a _a ra		8		
5	(a)	what is the use of cook's theorem? Prove it with an example.	8		
	(b)	Define the terms P, NP, NP complete and NP hard problems 2x4=	=8		
5% 89	W	Or			
92			50		
5.	(a)	Explain set cover problem in detail?	8		
18	(b)	Prove that TSP problem is NP- complete			

6E3202