E2002 Roll No.:____ Total Printed Pages: 4 # 1E2002 B. Tech. (Sem. I) (Main/Back) Examination, December - 2013 102 Engineering Mathematics - I (Common to All Branch) Time: 3 Hours] [Total Marks: 80 [Min. Passing Marks: 26 (Main) Min. Passing Marks: 24 (Back) Attempt any five questions. Selecting one question from each unit. All questions carry equal marks. Schematic diagrams must be shown wherever necessary. Any data you feel missing suitably be assumed and stated clearly. Units of quantities used / calculated must be stated clearly. Use of following supporting material is permitted during examination. (Mentioned in form No. 205) 1. NIL NIL all only bus soley manife. To NIL was mark ### UNIT - I 1 (a) Find the asymptotes of the following curve: $$x^3 - x^2y - xy^2 + y^3 + x^2 - y^2 - 1 = 0$$ 8 (b) The tangents at two points A and B on the cycloid $x = a(\theta - \sin \theta)$, $y = a(1 - \cos \theta)$ are at right angles. If P₁ and P₂ be the radii of curvature at these points, then prove that: $$\rho_1^2 + \rho_2^2 = 16a^2$$ 8 OR 1 (a) Find the points of inflexion on the curve : $$y^2 = x(x+1)^2$$ 8 (b) Trace the curve : $r^2 = a^2 \cos 2\theta$. 8 1E2002] 1 [Contd... # UNIT - II - TINU 2 (a) If $z(x+y) = x^2 + y^2$, show that $$\left(\frac{\partial z}{\partial x} - \frac{\partial z}{\partial y}\right)^2 = 4\left(1 - \frac{\partial z}{\partial x} - \frac{\partial z}{\partial y}\right)$$ 8 (b) If u = f(r), where $r = \sqrt{x^2 + y^2}$, then prove that $$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = f''(r) + \frac{1}{r}f'(r)$$ 8 #### OR 2 (a) Find the points where the function $$x^3y^2\left(1-x-y\right)$$ has maximum or minimum value and also find the value of the function at these points. 8 (b) Find the minimum value of $$x^2 + v^2 + z^2$$ subject to the condition $$ax + by + cz = p$$ 8 ### UNIT - III 3 (a) Find the volume of the solid generated by the revolution of the curve $$y(a^2 + x^2) = a^3$$ about its asymptotes. Ö (b) Evaluate : $\iint_A y \, dx \, dy$ where A is the region of integration bounded by the parabolas $y^2 = 4ax$ and $x^2 = 4ay$. 8 OR 3 (a) Change the order of integration in the following double integral: $$\int_0^a \cos \alpha \int_{x \tan \alpha}^{\sqrt{a^2 - x^2}} f(x, y) dx dy$$ 8 (b) Prove that: $$B(m,n) = \frac{\lceil m \rceil \lceil n \rceil}{\lceil (m+n) \rceil}, \ m > 0, \ n > 0$$ 8 ## UNIT - IV 4 Solve the following differential equations: (i) $$\left(x+2y^3\right)\frac{dy}{dx} = y$$ 5 (ii) $$2\frac{dy}{dx} = \frac{y}{x} + \frac{y^2}{x^2}$$ 5 (iii) $$(xy^2 + 2x^2y^3)dx + (x^2y - x^3y^2)dy = 0$$ 6 OR 4 Solve the following differential equations: (i) $$(D^3 - 2D^2 + 4D - 8)y = 0$$ 5 (ii) $$(D^2 - 4D + 4)y = e^{2x} + \sin 2x$$ 5 (iii) $$(D^3 - D^2 - 6D)y = 1 + x^2$$ 6 (a) Solve: Solve: $$x\frac{d^2y}{dx^2} - \frac{dy}{dx} - 4x^3y = x^5$$ Solve: (b) Solve: $$x^2 \frac{d^2 y}{dx^2} - 3x \frac{dy}{dx} + 4y = 2x^2$$ 8 OR Solve: (a) 5 $$x^{2} \frac{d^{2} y}{dx^{2}} - 2x(1+x)\frac{dy}{dx} + 2(1+x)y = x^{3}$$ Solve the differential equation: $$\frac{d^2y}{dx^2} - 2\frac{dy}{dx} + y = e^x \log x$$ by using the method of variation of parameters.