M.Sc. Second Semester Examination (C.B.C.S) April-May, 2014

Subject: Mathematics

Time: 3 hours Instructions:

Paper: MMA 201 RAS Real Analysis

Total Marks: 70

1. Attempt any three questions from each section, of which question No. 4 and 8 are compulsory 2. Answer each section in separate answer book. **SECTION: I** [07] Prove that outer measure of a closed interval is its length. Q-1.(a) Prove that any sequence in an algebra can be considered to be disjoint. [07] (b) Show that E is measurable iff there is a G_{δ} - set G with $E \subset G$ and $m^*(G - E) = 0$. [07] Q-2.(a)[07] Prove that sum and product of two measurable functions are also measurable. (b) [07] State and prove Littlewood's third principle. Q-3.(a)Under what situation a bounded function on [a,b] is Riemann integrable? Justify. [07](b) [03] Q-4.(a)State and prove Fatou's lemma. State Bounded convergence theorem and hence evaluate $\lim_{n\to\infty} \int_2^5 \frac{nx}{1+n^2x^2} dx$. [04] (b) **SECTION: II** [07] Show that every absolutely continuous function is the indefinite integral of its Q-5.(a) derivative. Prove that the Lebesgue integral of a non-negative measurable function generates a [07] (b) countably additive measure. [07] Q-6.(a)State and Prove LDCT. Explain its meaning. Suppose f is bounded measurable on [a, b] and $F(x) = \int_a^x f(t)dt + F(a)$. Then [07] (b) show that F' = f a. e. on [a, b]. Suppose f is absolutely continuous function and f'(x) = 0 a.e. on [a, b]. Then [07] Q-7.(a)show that f reduces to a constant. [07] Define convergence in measure. Give an example of it. Show that if $f_n \to f$ in (b) measure then there is a subsequence $\{f_{n_k}\}$ of $\{f_n\}$ converging to f a. e. [03] Define Function of bounded variation and show that monotonically increasing Q-8.(a)functions are of bounded variation. [04] State and prove Jordan Lemma. (b)

----END OF PAPER-----

M.Sc. Mathematics Sem-II Examination April-May, 2014

Course: MMA 202 GTP General Topology

Time: 3 hours]

[Total Marks: 70

Instructions: Standard notations and usual conventions are followed. 2. Attempt any three questions from each section, of which question No. 4 and 8 are compulsory 3. Answer each section in separate answer book. **SECTION: I** (a) Define lower limit Topology. Show that the lower limit topology on R is strictly finer [07] Q.1 than the standard topology on R. [07] (b) Show that product of two Hausdorff spaces if Hausdorff (a) Let X and Y be metric spaces and f a mapping of X into Y. Then show that f is [07] Q.2 continuous if and only if $x_n \to x \Leftrightarrow f(x_n) \to f(x)$. [07] (b) Let X_n be a convergent sequence in a topological space X .Show that it converges to a unique limit if X is Hausdorff. [07] (a) With usual notation show that $\overline{A} = A \cup A'$. Q.3 (b) State and prove the pasting lemma. Give an example of it. [07] Write answer of following questions. Q.4 [03] (a) Define Int(A); interior of a set And Bd(A); boundary of a set A. [04] (b) Show that (i) $Int(A) \cap Bd(A) = \Phi$ (ii) $Int(A) \cup Bd(A) = A$.

SECTION:II

Q.5	(a) If X and Y are connected spaces then prove that the product space $X \times Y$ is connected. Deduce that the finite product is also connected.	[07]
	(b) let A be a connected subspace of X . If $A \subseteq B \subseteq \overline{A}$, then show that B is also connected.	[07]
Q.6	(a). Define a path connected space. Show that a path connected space is connected. Give an example to show that the converse is not true in general. (b) If X and Y are compact spaces then prove that the product space $X \times Y$ is compact.	[07] [07]
Q.7	(a) Define components and path components of a topological space X . Show that path components of X are path connected disjoint subspaces of X whose union is X such that each nonempty path connected subspace of X intersect only one of them.	[07]
	(b) If the space X is not compact and Y is its one point compactification then prove that $\tilde{X}=Y$.	
Q.8	Answer the following questions. (a) Let (X,d) be a metric space. Show that d_1 defined by $d_1(x,y) = d(x,y)/[1 + d(x,y)]$ is also a	[04]
	metric on X. Is (X,d_1) a bounded metric? Justify your answer?	
	(b) Show that the union of two connected sets is connected if they have a common point.	[03]

-----END OF PAPER-----

M.Sc. Second Semester Examination (C.B.C.S) April-May, 2014

Subject: Mathematics
Paper: MMA 203 FSV Functions of Several Variables

Time: 3 nours		arks: /U		
 Instructions: 1. Attempt any three questions from each section, of which question No. 4 and 8 are compulsory 2. Answer each section in separate answer book. 				
	SECTION: I			
Q-1.	Prove that $ \langle x, y \rangle \le x y $; $\forall x, y \in \mathbb{R}^n$ and show that equality holds if and only if x and y are linearly dependent.	14		
Q-2.(a)	If $f: \mathbb{R}^n \to \mathbb{R}^m$ is differentiable at $a \in \mathbb{R}^n$, then there is a unique linear transformation $\lambda: \mathbb{R}^n \to \mathbb{R}^m$ such that $Df(a) = \lambda$.	07		
(b)	Prove that $f: \mathbb{R}^n \to \mathbb{R}^m$ is differentiable at $a \in \mathbb{R}^n$ if and only if each f^i is differentiable at $a \in \mathbb{R}^n$ $(1 \le i \le m)$ and $Df(a) = (Df^1(a), Df^2(a),, Df^m(a))$	07		
Q-3.(a)	If $f: R^2 \to R$ defined by $f(x, y) = \sin(xy^2), ((x, y) \in R^2)$. Then find $f(a, b)$ by using Chain rule.	07		
(b)	Let $f: A \rightarrow R$ be a bounded function and $a \in R$. Then prove that f is continuous at a if and only if $O(f, a) = 0$	07		
Q-4 .	Write answer of following questions. 1. Let $A \subseteq R^n$ be a rectangle and let $f: A \to R^n$ be continuously differentiable. If there is a number $M > 0$ such that $ D_j f'(x) \le M$ $(\forall x \in A^n)$ then prove that $ f(x) - f(y) \le n^2 M x - y $ $(\forall x, y \in A)$	03		
	2. Let $A \subseteq R''$ be an open set and $a \in A$. If the maximum (or minimum) of $f: A \to R$ occurs at $a \in A$ and $D_i f(a)$ exists then prove that $D_i f(a) = 0$. Is it converse true?	04		

SECTION: II

Q-5.(a)	Define: k-tensor, Tensor product, alternating k-tensor, Alt of k-tensor, Wedge product, Vector field, k-forms.	07
(b)	Prove that (i) $f^*(S+T) = f^*S + f^*T$ (ii) $f^*(S \otimes T) = f^*S \otimes f^*T$	07
Q-6.(a)	If $\omega \in \Lambda^k(V)$ then prove that $Alt(\omega) = \omega$.	07
(b)	If $\omega \in \Lambda^k(V)$, $\eta \in \Lambda^l(V)$, $\mu \in \Lambda^m(V)$ then prove that $(\omega \wedge \eta) \wedge \mu = \omega \wedge (\eta \wedge \mu)$	07
Q-7.(a)	Prove in usual notation $\dim(\Lambda^k(V)) = \binom{n}{k}$.	07
(b)	Show that df is a 1-form on R^n . Let $f: R^n \to R^m$ be a	07
	differentiable function. Let $F = f^*$, then	
	$F(dx^i) = \sum_{j=1}^n D_j f^i dx^i (1 \le i \le m).$	
Q-8.	Write answer of following questions.	
	1. If $f: \mathbb{R}^n \to \mathbb{R}^m$ is differentiable at $a \in \mathbb{R}^n$, then each $D_j f'(a)$	03
	exists for $1 \le i \le m, 1 \le j \le n$ and $f'(a) = \left[D_j f'(a)\right]_{m \times n}$.	
	2. Let $f: \mathbb{R}^2 \to \mathbb{R}^3$ defined by $f(x) = (x^1, x^1 + x^2, (x^2)^2)$ where	04
	$x = (x^{1}, x^{2}) \in \mathbb{R}^{2}$. Find $f'(b)$ where $b = (1, 0) \in \mathbb{R}^{2}$	

-----END OF PAPER-----

Seat	No			
Scal	INO.	 ٠.		

M.Sc. Second Semester Examination (C.B.C.S) April-May, 2014 Subject: Mathematics

Paper: MMA204MPD (Method of Partial Differential Equations)

Time: 3 hours Instructions:

Total Marks: 70

04

- 1. Attempt any three questions from each section, of which question No. 4 and 8 are compulsory.
- 2. Answer each section in separate answer book.

SECTION: I

Q-1 [A] Solve
$$(D^2 - DD' + D' - 1)z = \cos(x + 2y) + e^y$$
. 07

[B] Solve $(x^2D^2 - y^2D'^2 + xD - yD')z = \log x$. 07

Q-2 [A] Classify the equation and convert it into canonical form $4r - y^6t = 3y^5q$. 07

[B] Reduce $x^2\frac{\partial^2 z}{\partial x^2} + y^2\frac{\partial^2 z}{\partial y^2} = 0$ to canonical form and Solve. 07

Q-3 [A] Solve $r - t\cos^2 x + ptanx = 0$. By Monge's Method. 07

[B] Solve $x^2r + 2xys + y^2t = 0$. By Monge's Method. 07

Q-4 Write answer of following questions. (A) Eliminate the arbitrary functions f and g from $z = f(x - y) + g(x + y)$.

[B] Prove that if $\alpha D + \beta D' + \gamma$ is a factor of F(D, D') ($\alpha \neq 0$), then

arbitrary function of a single variable ξ .

 $e^{-\frac{y}{\alpha}x} \varphi(\beta x - \alpha y)$ is a solution of F(D, D')z = 0, where φ is an

SECTION: II

Q-5	[A]	Solve $3r + 4s + t + (rt - s^2) = 1$. By Monge's Method.	07
	[B]	Discuss the Neumann interior B.V.P. for a circle.	07
Q-6	[A]	Use Separation of variable to solve equation $\frac{\partial^2 V}{\partial x^2} = \frac{\partial V}{\partial t}$, Given that $V = 0$, when $t \to \infty$ as well as $v = 0$ at $x = 0$ and $x = l$.	07
	[B]	State Harnack's Theorem and Prove it.	07
Q-7	[A]	State and prove maximum principle.	07
	[B]	Transformation of Laplace equation $\frac{\partial^2 v}{\partial x^2} + \frac{\partial^2 v}{\partial y^2} + \frac{\partial^2 v}{\partial z^2} = 0$ into Cylindrical Coordinates.	07
Q-8		Write answer of following questions.	
	[A]	State Green's theorem.	03
	[B]	Solve $r + t - (rt - s^2) = 1$. By Monge's Method.	04

-----END OF PAPER-----

M.Sc. Second Semester Examination (C.B.C.S) April-May, 2014 Subject: Applied Linear Algebra Paper: MMB-205 ALA

Time: 31	1001.5	Marks: 70
CO	ons: Attempt any three questions from each section, of which question No. Compulsory Answer each section in separate answer book.	4 and 8 are
	SECTION: 1	
()-!	 (A) Prove that if T:U→V is a homomorphism then (i) KerT Is a subspace of U (ii) T Is an isomorphism iff KerT = {0_v} 	07
	(B) If W_1 and W_2 are subspaces of a finite dimensional vector space V then show that	07
Q-,°	$\dim(W_1 + W_2) = \dim w_1 + \dim W_2 - \dim(W_1 \cap W_2)$ (A) Show that if I is a finite dimensional vector space over F then $T \in A(V)$ which is right invertible need not imply left invertible.	07
	(B)Prove that If V be a finite dimensional vector space over F and $T \in \mathcal{A}(V)$ then T is regular iff T is onto.	07
Q-3	(A) Prove that If V is a finite dimensional vector space over F then any two bases of V have the same number of elements. (B) Show that If $p(x)$ is minimal polynomial for $T \in A(V)$ and	07
	$S \in A(V)$ is invertible then $p(x)$ is also minimal polynomial for STS^{-1}	07
Q-4	Write answer of following questions. 1. If $\lambda \in F$ is a characteristic root of $T \in A(V)$, then show that λ is	3 03
	a root of the minimal polynomial of T . 2. Find the matrix D with respect to basis $1, x, x^2 + x^3$.	04

SECTION: II

()-5	(A) For $A = (\alpha_n)_{n \in \mathbb{N}} \in F_n$, $B = (\beta_n)_{m \in \mathbb{N}} \in F_n$ and $\lambda \in F$, show that	07
	1. $tr(\lambda A) = \lambda trA$ 2. $tr(A + B) = trA + trB$ 3. $tr(AB) = tr(BA)$. (B) If $\dim_{\mathcal{F}} V = n$ and $T \in A(V)$ has all its characteristic roots in F then show that T satisfies a polynomial of degree n over F .	07
()-6	(A) Let V be a finite dimensional vector space over F and $T \in A(V)$. Suppose $V = V_1 \oplus V_2$, where V_1, V_2 are subspaces of V invariant under T . Let $T / V_1 \equiv T_1$, $T / V_2 \equiv T_2$ and minimal polynomial for T_i be $p_i(x) \in F[x], i \in \{1,2\}$ then show that minimal polynomial for T over F is least common multiple of $p_i(x), p_j(x)$.	07
	(B)Prove that If $T \in A(V)$ is unitary iff T takes an orthonormal basis of V into an orthonormal basis of V	07
()- '	(A) Show that $T \in A(V)$ is unitary iff $T.T' = Id$ (B) Prove that If T is Hermition and $T^k(v) = 0$, for some $k \ge 1$ then $T(v) = 0$	07 07
Q-8	Write answer of following questions. 1. Show that $tr(AB)$ need not be equal to $trAtrB$ 2. For all $A, B \in F_n$ and $\lambda \in F$, show that	03 04
	1. $(A+B) = A+B$ 2. $(\lambda A) = \lambda A$.	