GANPAT UNIVERSITY M.Sc. Second Semester Examination (C.B.C.S) April-May, 2013 Subject: Mathematics Paper: MMA 201 RAS Real Analysis

Time: 3 hours Instructions: Total Marks: 70

- 1. Attempt any three questions from each section, of which question No. 4 and 8 are compulsory.
- 2. Answer each section in separate answer book.

SECTION: I

Q.1	(a) Prove that arbitrary intersection of algebras is an algebra.	[07]
	(b) Prove that Lebesgue measure is countably additive measure.	[07]
Q.2	(a) Show that sum and product of two measurable functions is measurable.(b) State Littlewood's three principles and prove third principle.	[07] [07]
Q.3	(a) State and prove Fatou's lemma.	[07]
	(b) State and prove Lebesgue's monotone convergence theorem and hence	[07]

evaluate $\lim_{n \to \infty} \int_{2}^{\infty} \frac{nx}{1+nx} dx$.

Q.4Write answer of following questions.
1. Prove that every borel set is measurable set.[03]

2. Show χ_E is measurable if and only if *E* is measurable. [04]

SECTION: II

- Q.5 State and prove Lebesgue's dominated convergence theorem and hence [14] evaluate $\lim_{n \to \infty} \int_{2}^{5} \frac{nx}{1+n^2 x^2} dx$.
- Q.6 (a) Show that f is of bounded variation on [a,b] if and only if f is the [07] difference of two monotonically increasing real valued functions on [a,b].
 - (b) Let $f, g \in BV[a, b]$ then prove that (i) $f \cdot g \in BV[a, b]$. (ii) $\frac{f}{g} \in BV[a, b]$ if $g \neq 0$. [07]

Q.7 (a) Let f be integrable function on [a,b]. Then prove that the indefinite [07] integral of f is a continuous function of bounded variation on [a,b].

(b) Prove that every absolutely continuous function is the indefinite integral [07] of its derivative.

Q.8 Write answer of following questions.

- 1. Show that the absolutely continuous function is function of bounded variation [03]
- 2. Define convergence in measure and establish relation with convergence a.e. [04]

-----END OF PAPER------

GANPAT UNIVERSITY

M.Sc. Mathematics Sem-II Examination April-May, 2013

[Total Marks: 70

PAPER :: MMA 202 GTP General Topology

Time: 3 hours]

Instructions:

- 1. Standard notations and usual conventions are followed.
- 2. Attempt any three questions from each section, of which question No. 4 and 8 are compulsory
- 3. Answer each section in separate answer book.

SECTION: I

- Q.1 (a) Define lower limit Topology. Let τ be the collection of subset of X, whose [07] complements is either finite or all of X. Then prove that (X, τ) is a topological space.
 (b)
 - (i) Prove or disprove: Arbitrary intersection of open sets is open. [07]
 - (ii) Show that A is open in X if and only if A contains a nhbd of each of its points.
- Q.2 (a) Show that $f:(X,\tau_1) \to (Y,\tau_2)$ is continuous if and only if $f(\overline{A}) \subset \overline{f(A)}$, [07] for every subset A of X.
 - (b) Let $f_1: A \to X, f_2: A \to Y$ and $f: A \to X \times Y$ be functions such that $f(a) = (f_1(a), f_2(a))$ where A, X and Y are topological spaces. Prove that f is continuous if and only if f_1 and f_2 are continuous. (07)
- Q.3 (a) If β is a basis for the topology of X and C is a basis for the topology of Y, [07] show that {B×c | B∈β and c∈C} is a basis for the product topology of X×Y.
 (b) State and prove the pasting lemma. Give an example of it. [07]
- Q.4 Write answer of following questions.
 (a) 1.Prove that (-1,1) and R are homeomorphic to each other.
 (b) Prove that product of two Housdorff space is a Housdorff space.
 (c) Let (X,d) be a metric space. If d

 : X×X → R is defined as
 - (c) Let (X, d) be a metric space. If $d : X \times X \to \mathbb{R}$ is defined as $\overline{d}(x, y) = \min\{d(x, y), 1\}$ then show that \overline{d} is a metric.
 [02]

	SECTION:II	
Q.5	(a) Shrow that both Connectedness and Compactness are topologycal property.	[07]
	(b) Define a path connected space. Show that Path Connected space is	[07]
	Connected. Give an example to show that the converse is not true in general.	
Q.6	(a). If A is a connected subset of X and $A \subset B \subset \overline{A}$ then prove that B is connected. Deduce that in particular \overline{A} is also connected.	[07]
	(b) Prove that Connectedness is finite productive.	[07]
Q.7	(a) Prove that product of two compact space is compact.	[07]
	(b) Let X be a locally compact Hansdorff space which is not compact. Define one-point compactification of X. If Y is this compactification, show that Y is a compact Hausdorff space such that X is dense in Y.	[07]
Q.8	Answer the following questions.	
	1. Let X be a Topological space and $a, b \in X$., If $b \in comp(a)$ then prove that	[02]
	comp(b) = comp(a). Is the converse true ?. Justify your answer.	
	2. Let $X = U \bigcup V \& Y$ is connected subspace of X then show that either $Y \subset U$ or $Y \subset V$.	[03]
	3. Show that union of two connected set is connected if they have a common point.	[02]

-----END OF PAPER------

GANPAT UNIVERSITY

M.Sc. Second Semester Examination (C.B.C.S.) April-May, 2013

Subject: Mathematics

Paper: MMA 203 FSV Functions of Several Variables

Time: 3 hours

Total Marks: 70

Instructions:

- 1. Attempt any three questions from each section, of which question No. 4 and 8 are compulsory.
- 2. Answer each section in separate answer book.

SECTION - I

- Q.1 A Show that a closed and bounded subset of \mathbb{R}^n is bounded. 07
 - **B** Define the oscillation o(f,a) of a bounded function $f: A \to R$ at $a \in A \subset R^n$. **07** If $f: A \to R$ is a bounded function, prove that f is continuous at $a \in A$ if and only if o(f,a) = 0.
- Q.2 A Define derivative of a mapping $f: \mathbb{R}^n \to \mathbb{R}^m$. 07 Show that every linear transformation is differentiable.
 - **B** Define a continuously differentiable mapping $f : \mathbb{R}^n \to \mathbb{R}^m$ at $a \in \mathbb{R}^n$. **07** If $f : \mathbb{R}^n \to \mathbb{R}^m$ is a continuously differentiable mapping at $a \in \mathbb{R}^n$, show that Df(a) exists.
- **Q.3 A** If a mapping $f : \mathbb{R}^n \to \mathbb{R}^m$ is differentiable at $a \in \mathbb{R}^n$, show that $D_j f^i(a)$ exists 07 for all $1 \le i \le m$ and for all $1 \le j \le n$. Find f'(a).
 - **B** For differentiable mappings $f : \mathbb{R}^n \to \mathbb{R}^m$ and $g : \mathbb{R}^m \to \mathbb{R}^p$, prove the Chain 07 Rule.
- Q.4 Write answer of the following questions.
 - A Discuss the continuity of the mapping $f: \mathbb{R}^n \to \mathbb{R}$ given by f((0,0)) = 0, and 03

$$f((x,y)) = \left(\frac{x}{x^2 + y^2}, \frac{y}{x^2 + y^2}\right)$$
 for all $(x, y) \neq (0, 0)$.

B Find the derivative of $f(x, y, z) = x + \sin y \sin z$ at the point a = (0, 0, 0). 04

SECTION - II

- Q.5 A Define the directional derivative of a function $f : \mathbb{R}^n \to \mathbb{R}$ at $a \in \mathbb{R}^n$. In usual notations, prove that $D_{x+y}f(a) = D_xf(a) + D_yf(a)$.
 - **B** Find all the partial derivatives of $f(x, y, z) = (x^{y+z}, (x+y)^z)$. **07** Determine the Jacobian matrix f'(a) of f at the point a = (1,1,1).
- Q.6 A Define the term k-tensor on a vector space V. In usual notations, prove that 07 $\mathfrak{I}^{k}(V)$ of all k-tensors is a vector space.
 - **B** Define the alternating tensor. For $w \in \Lambda^{k}(V)$, show that Alt(w) = w. 07
- **Q.7 A** Define a vector field F on \mathbb{R}^n . If F and G are vector fields F on \mathbb{R}^n , then **07** define F+G and show that it is also a vector field.
 - **B** Define a k-form on \mathbb{R}^n . Let $f:\mathbb{R}^n \to \mathbb{R}$ be a differentiable. 07 Define df and show that it is a 1-form on \mathbb{R}^n .
- **Q.8** Write answer of the following questions.

A For
$$x = (x^1, x^2)$$
, $y = (y^1, y^2) \in \mathbb{R}^2$, define $T(x, y) = x^1 y^1 - x^2 y^1$; find $Alt(T)$. 03

B For
$$x = (x^1, x^2) \in \mathbb{R}^2$$
, define $\varphi(x) = x^1 + x^2$ and $\eta(x) = 2x^1$; find $\varphi \wedge \eta$. **04**

----X----X-----

Seat No. :....

GANPAT UNIVERSITY M.Sc. Second Semester Examination (C.B.C.S) April-May, 2013 Subject: Mathematics

Paper: MMA204MPD (Method of Partial Differential Equations)

Time: 3 hours

Instructions:

Total Marks: 70

- 1. Attempt any three questions from each section, of which question No. 4 and 8 are compulsory
- 2. Answer each section in separate answer book.

SECTION: I

Q-1	[A]	Using the method of Undetermined Coefficients, Solve the Differential Equation is $y'' + 4y = 8x^2$.	07
	[B]	Solve $x^2 \frac{d^2y}{dx^2} + 4x \frac{dy}{dx} + 2y = x^2 \sin(\log x)$ Using by Cauchy-Euler linear Differential Equation.	07
Q-2	[A]	Solve $xr + ys = 10xy^3 - p$. By Lagrange Method.	07
	[B]	Reduce the canonical form and Solve $\frac{\partial^2 z}{\partial x^2} + 2 \frac{\partial^2 z}{\partial x \partial y} + \frac{\partial^2 z}{\partial y^2} = 0.$	07
Q-3	[A]	Solve $r = a^2 t$. By Monge's Method.	07
	[B]	Solve $r + 3s + t + (rt - s^2) = 1$. By Monge's Method.	07
Q-4		Write answer of following questions.	
	[A]	Solve the method of Variation Parameter $\frac{d^2y}{dx^2} + a^2y = secax.$	03
	[B]	Reduce $\frac{\partial^2 z}{\partial x^2} = x^2 \frac{\partial^2 z}{\partial y^2}$ to canonical form.	04

SECTION: II

Q-5	[A]	Solve $y^2r - 2ys + t = p + 6y$. By Monge's Method	07
	[B]	Derive General Solution of one - dimensional Wave equation $\frac{\partial^2 y}{\partial x^2} = \left(\frac{1}{c^2}\right) \left(\frac{\partial^2 y}{\partial t^2}\right).$	07
Q-6	[A].	Use Separation of variable to solve equation $\frac{\partial^2 v}{\partial x^2} = \frac{\partial v}{\partial t}$, Given that $V = 0$, when $t \rightarrow \infty$ as well as $v = 0$ at $x = 0$ and $x = l$.	07
	[B]	Transformation of Laplace equation $\frac{\partial^2 V}{\partial x^2} + \frac{\partial^2 V}{\partial y^2} = 0$ into Polar Coordinates.	07
Q-7	[A]	Derive Dirichlet Problem in Rectangle.	07
	[B]	State Harnack's Theorem and Prove it.	07
Q-8		Write answer of following questions.	
	[A]	Solve $2s + (rt - s^2) = 1$. By Monge's Method.	03
	[B]	Using Separation of variable to solve $\frac{\partial u}{\partial x} = 2\left(\frac{\partial u}{\partial t}\right) + u$, Where $u(x, 0) = 6e^{-3x}$.	04

-----END OF PAPER------

114

GANPAT UNIVERSITY M.Sc. Second Semester Examination (C.B.C.S) April-May, 2013 Subject: Mathematics Paper: MMB 205 ALA Applied Linear Algebra

 Time: 3 hours
 Total Marks: 70

 Instructions:
 1. Attempt any three questions from each section, of which question No. 4 and 8 are compulsory

 2. Answer each section in separate answer book.

SECTION: I

- Q.1 (a) Let $T: U \to V$ be linear homomorphism and $W = \ker(T)$. If T is onto then [07] $\frac{U}{W}$ is isomorphic to V.
 - (b) Let V be a finite dimensional vector space over F. If W_1 and W_2 are subspaces of V then prove that $(W_1^\circ)^\circ = W_1$ and $(W_1 + W_2)^\circ = W_1^\circ \cap W_2^\circ$. [07]
- Q.2 (a) Let V be a finite dimensional vector space over F. Then prove that $T \in A(V)$ [07] is invertible if and only if T is onto.
 - (b) Let V be a finite dimensional vector space over F, then prove that $r(ST) \le \min\{r(S), r(T)\}$, for $S, T \in A(V)$. [07]
- Q.3 (a) Let V be a finite dimensional vector space over F, then prove that $T \in A(V)$ [07] is invertible if and only if the constant term of the minimal polynomial for T is not zero.
 - (b) Let W_1 and W_2 be two subspace of a finite dimentional vector space V. Then [07] prove that $\dim(W_1 + W_2) = \dim(W_1) + \dim(W_2) \dim(W_1 \cap W_2)$.

Q.4 Write answer of following questions.

- **1.** Show that span $\{(1,0,1), (-1,2,3), (0,1,-1)\}$ is all of \mathbb{R}^3 . [03]
- 2. Let W_1 and W_2 are subspace of a vector space V. Then show that $W_1 \cap W_2$ and $W_1 + W_2$ are subspace of V. [04]

Page 1 of 2

SECTION: II

Q.5	(a) If $\lambda \in F$ is a characteristic root of $T \in A(V)$, then prove that for any polynomial $q(x) \in F[x]$, $q(\lambda)$ is a characteristic root of $q(T)$.	[07]
	(b) Show that $\det(AB) = \det(A) \cdot \det(B)$, for $A, B \in F_n$. Is it true for $A, B \in F_n$ $\det(A+B) = \det(A) + \det(B)$?	[07]
Q.6	(a) Prove that the determinant of a triangular matrix is the product of its entries on the main diagonal.	[07]
	(b) For each $i = 1, 2,, k$ $V_i \neq (0)$ and $V = V_1 \oplus V_2 \oplus, \oplus V_k$. Then prove that the minimal polynomial of T_i is $q_i(x)^{l_i}$.	[07]
Q.7	(a) If two rows of any matrix are equal then prove that its determinant is zero.	[07]
	(b) If $T \in A(V)$ has all its characteristic roots in F, then prove that there is a basis of V in which the matrix of T is triangular.	[07]
Q.8	Write answer of following questions. 1. Define trace of a matrix. Let $A, B \in M_n(F)$ then show that $tr(AB) = tr(BA)$.	[03]
	2. State Cramer's rule and hence solve the following system. x+2y+3z = -5	[04]
	2x + y + z = -1	

x + y + z = 0

-----END OF PAPER------