GANPAT UNIVERSITY

M.Sc. Second Semester Examination (C.B.C.S) April-May, 2013
 Subject: Mathematics
 Paper: MMA 201 RAS Real Analysis

Time: 3 hours
Total Marks: 70
Instructions:

1. Attempt any three questions from each section, of which question No. 4 and 8 are compulsory.
2. Answer each section in separate answer book.

SECTION: I

Q. 1 (a) Prove that arbitrary intersection of algebras is an algebra.
(b) Prove that Lebesgue measure is countably additive measure.
Q. 2 (a) Show that sum and product of two measurable functions is measurable.
(b) State Littlewood's three principles and prove third principle.
Q. 3 (a) State and prove Fatou's lemma.
(b) State and prove Lebesgue's monotone convergence theorem and hence evaluate $\lim _{n \rightarrow \infty} \int_{2}^{5} \frac{n x}{1+n x} d x$.
Q. 4 Write answer of following questions.

1. Prove that every borel set is measurable set.
2. Show χ_{E} is measurable if and only if E is measurable.

SECTION: II

Q. 5 State and pro:: Lebesgue's dominated convergence theorem and hence
Q. 6 (a) Show that f is of bounded variation on $[a, b]$ if and only if f is the difference of two monotonically increasing real valued functions on $[a, b]$.
(b) Let $f, g \in B V[a, b]$ then prove that
(i) $f \cdot g \in B V[a, b]$.
(ii) $\frac{f}{g} \in B V[a, b]$ if $g \neq 0$.
Q. 7 (a) Let f be integrable function on $[a, b]$. Then prove that the indefinite integral of f is a continuous function of bounded variation on $[a, b]$.
(b) Prove that every absolutely continuous function is the indefinite integral of its derivative.
Q. 8 Write answer of following questions.

1. Show that the absolutely continuous function is function of bounded variation
2. Define convergence in measure and establish relation with convergence a.e.

GANPAT UNIVERSITY

M.Sc. Mathematics Sem-II Examination April-May, 2013

PA $\bar{\rho} \& R:$ MMA 202 GTP General Topology

Time: 3 hours]
Instructions:

1. Standard notations and usual conventions are followed.
2. Attempt any three questions from each section, of which question No. 4 and 8 are compulsory
3. Answer each section in separate answer book.

SECTION: I

Q. 1 (a) Define lower limit Topology. Let τ be the collection of subset of X, whose complements is either finite or all of X.Then prove that (X, τ) is a topological space.
(b)
(i) Prove or disprove: Arbitrary intersection of open sets is open.
(ii) Show that A is open in X if and only if A contains a nhbd of each of its points.
Q. 2 (a) Show that $f:\left(X, \tau_{1}\right) \rightarrow\left(Y, \tau_{2}\right)$ is continuous if and only if $f(\bar{A}) \subset \overline{f(A)}$, for every subset A of X.
(b) Let $f_{1}: A \rightarrow X, f_{2}: A \rightarrow Y$ and $f: A \rightarrow X \times Y$ be functions such that
$f(a)=\left(f_{1}(a), f_{2}(a)\right)$ where A, X and Y are topological spaces.
Prove that f is continuous if and only if f_{1} and f_{2} are continuous.
Q. 3 (a) If β is a basis for the topology of X and C is a basis for the topology of Y, show that $\{B \times c \mid B \in \beta$ and $c \in C\}$ is a basis for the product topology of $X \times Y$.
(b) State and prove the pasting lemma. Give an example of it.

Q. 4 Write answer of following questions.

(a) 1.Prove that $(-1,1)$ and R are homeomorphic to each other.
2. Prove that Int. (A) is the largest open set contained in A.
(b) Prove that product of two Housdorff space is a Housdorff space.
(c) Let (X, d) be a metric space. If $\bar{d}: X \times X \rightarrow \mathbb{R}$ is defined as $\bar{d}(x, y)=\min \{d(x, y), 1\}$ then show that \bar{d} is a metric.

SECTION:II

Q. 5 (a) Shrow that both Connectedness and Compactness are topologycal property.
(b) Define a path connected space. Show that Path Connected space is

Connected. Give an example to show that the converse is not true in general.
Q. 6 (a). If A is a connected subset of X and $A \subset B \subset \bar{A}$ then prove that B is connected. Deduce that in particular \bar{A} is also connected.
(b) Prove that Connectedness is finite productive.
Q. 7 (a) Prove that product of two compact space is compact.
(b) Let X be a locally compact Hansdorff space which is not compact. Define one-point space such that X is dense in Y.

Q. 8 Answer the following questions.

1. Let X be a Topological space and $\mathrm{a}, \mathrm{b} \in \mathrm{X}$., If $b \in \operatorname{comp}(a)$ then prove that $\operatorname{comp}(b)=\operatorname{comp}(a)$. Is the converse true ?. Justify your answer.
2. Let $X=U \bigcup V \& Y$ is connected subspace of X then show that either $Y \subset U$ or $Y \subset V$.
3. Show that union of twe connected set is connected if they have a common point.

compactification of X. If Y is this compactification, show that Y is a compact Hausdorff

GANPAT UNIVERSITY

M.Sc. Second Semester Examination (C.B.C.S.) April-May, 2013

Subject: Mathematics

Paper: MMA 203 FSV Functions of Several Variables

Time: 3 hours
Total Marks: 70

Instructions:

1. Attempt any three questions from each section, of which question No. 4 and 8 are compulsory.
2. Answer each section in separate answer book.

SECTION - I
Q. 1 A Show that a closed and bounded subset of \mathbb{R}^{n} is bounded.

B Define the oscillation $o(f, a)$ of a bounded function $f: A \rightarrow R$ at $a \in A \subset R^{n} .07$ If $f: A \rightarrow R$ is a bounded function, prove that f is continuous at $a \in A$ if and only if $o(f, a)=0$.
Q. 2 A Define derivative of a mapping $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$.

Show that every linear transformation is differentiable.
B Define a continuously differentiable mapping $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ at $a \in \mathbb{R}^{n}$. If $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is a continuously differentiable mapping at $a \in \mathbb{R}^{n}$, show that $D f(a)$ exists.
Q. 3 A If a mapping $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is differentiable at $a \in \mathbb{R}^{n}$, show that $D_{j} f^{i}(a)$ exists 07 for all $1 \leq i \leq m$ and for all $1 \leq j \leq n$. Find $f^{\prime}(a)$.
B For differentiable mappings $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ and $g: \mathbb{R}^{m} \rightarrow \mathbb{R}^{p}$, prove the Chain 07 Rule.
Q. 4 Write answer of the following questions.

A Discuss the continuity of the mapping $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ given by $f((0,0))=0$, and $f((x, y))=\left(\frac{x}{x^{2}+y^{2}}, \frac{y}{x^{2}+y^{2}}\right)$ for all $(x, y) \neq(0,0)$.
B Find the derivative of $f(x, y, z)=x+\sin y \sin z$ at the point $a=(0,0,0)$.

SECTION - II

Q.5A Define the directional derivative of a function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ at $a \in \mathbb{R}^{n}$.

In usual notations, prove that $D_{x+y} f(a)=D_{x} f(a)+D_{y} f(a)$.
B Find all the partial derivatives of $f(x, y, z)=\left(x^{y+z},(x+y)^{z}\right)$.
Determine the Jacobian matrix $f^{\prime}(a)$ of f at the point $a=(1,1,1)$.
Q. 6 A Define the term k-tensor on a vector space V. In usual notations, prove that 07 $\mathfrak{J}^{k}(V)$ of all k-tensors is a vector space.
B Define the alternating tensor. For $w \in \Lambda^{k}(V)$, show that $\operatorname{Alt}(w)=w$.
Q. 7 A Define a vector field F on \mathbb{R}^{n}. If F and G are vector fields F on \mathbb{R}^{n}, then 07 define $F+G$ and show that it is also a vector field.
B Define a k-form on \mathbb{R}^{n}. Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be a differentiable. 07 Define $d f$ and show that it is a 1 -form on \mathbb{R}^{n}.
Q. 8 Write answer of the following questions.

A For $x=\left(x^{1}, x^{2}\right), y=\left(y^{1}, y^{2}\right) \in \mathbb{R}^{2}$, define $T(x, y)=x^{1} y^{1}-x^{2} y^{1}$; find $\operatorname{Alt}(T)$.
B For $x=\left(x^{1}, x^{2}\right) \in \mathbb{R}^{2}$, define $\varphi(x)=x^{1}+x^{2}$ and $\eta(x)=2 x^{1}$; find $\varphi \wedge \eta$. 04

Seat No. : \qquad

GANPAT UNIVERSITY

M.Sc. Second Semester Examination (C.B.C.S) April-May, 2013

Subject: Mathematics
Paper: MMA204MPD (Method of Partial Differential Equations)
Time: 3 hours
Instructions:
Total Marks: 70

1. Attempt any three questions from each section, of which question No. 4 and 8 are compulsory
2. Answer each section in separate answer book.

SECTION: I

Q-1 [A] Using the method of Undetermined Coefficients, Solve the Differential Equation is $y^{\prime \prime}+4 y=8 x^{2}$.
[B] Solve $x^{2} \frac{d^{2} y}{d x^{2}}+4 x \frac{d y}{d x}+2 y=x^{2} \sin (\log x)$ Using by Cauchy-Euler linear Differential Equation.

Q-2 [A] Solve $x r+y s=10 x y^{3}-p$. By Lagrange Method.
[B] Reduce the canonical form and Solve

$$
\frac{\partial^{2} z}{\partial x^{2}}+2 \frac{\partial^{2} z}{\partial x \partial y}+\frac{\partial^{2} z}{\partial y^{2}}=0
$$

Q-3 [A] Solve $r=a^{2} t$. By Monge's Method.
[B] Solve $r+3 s+t+\left(r t-s^{2}\right)=1$. By Monge's Method. 07
Q-4 Write answer of following questions.
[A] Solve the method of Variation Parameter

$$
\begin{equation*}
\frac{d^{2} y}{d x^{2}}+a^{2} y=\sec a x \tag{03}
\end{equation*}
$$

[B] Reduce $\frac{\partial^{2} z}{\partial x^{2}}=x^{2} \frac{\partial^{2} z}{\partial y^{2}}$ to canonical form.

SECTION: II

Q-5 [A] Solve $y^{2} r-2 y s+t=p+6 y$. By Monge's Method 07
[B] Derive General Solution of one - dimensional Wave equation 07

$$
\frac{\partial^{2} y}{\partial x^{2}}=\left(\frac{1}{c^{2}}\right)\left(\frac{\partial^{2} y}{\partial t^{2}}\right)
$$

Q-6 [A] Use Separation of variable to solve equation $\frac{\partial^{2} V}{\partial x^{2}}=\frac{\partial V}{\partial t}$, Given that $\mathrm{V}=0$, when $\mathrm{t} \rightarrow \infty$ as well as $\mathrm{v}=0$ at $x=0$ and $x=l$.
[B] Transformation of Laplace equation $\frac{\partial^{2} V}{\partial x^{2}}+\frac{\partial^{2} V}{\partial y^{2}}=0$ into Polar Coordinates.

Q-7 [A] Derive Dirichlet Problem in Rectangle.
[B] State Harnack's Theorem and Prove it.
Q-8 Write answer of following questions.
[A] Solve $2 s+\left(r t-s^{2}\right)=1$. By Menge's Method. 03
[B] Using Separation of variable to solve 04

$$
\frac{\partial u}{\partial x}=2\left(\frac{\partial u}{\partial t}\right)+u, \text { Where } u(x, 0)=6 e^{-3 x} .
$$

GANPAT UNIVERSITY

M.Sc. Second Semester Examination (C.B.C.S) April-May, 2013
 Subject: Mathematics
 Paper: MMB 205 ALA Applied Lincar Algebra

Time: 3 hours
Instructions:
Total Marks: 70

1. Attempt any three questions from each section, of which question No. 4 and 8 are
compulsory
2. Answer each section in separate answer book.

SECTION: I

Q. 1 (a) Let $T: U \rightarrow V$ be linear homomorphism and $W=\operatorname{ker}(T)$. If T is onto then U / W is isomorphic to V.
(b) Let V be a finite dimensional vector space over F. If W_{1} and W_{2} are subspaces of V then prove that $\left(W_{1}^{\circ}\right)^{\circ}=W_{1}$ and $\left(W_{1}+W_{2}\right)^{\circ}=W_{1}^{\circ} \cap W_{2}^{\circ}$.
Q. 2 (a) Let V be a finite dimensional vector space over F. Then prove that $T \in A(V)$ is invertible if and only if T is onto.
(b) Let V be a finite dimensional vector space over \bar{F}, then prove that $r(S T) \leq \min \{r(S), r(T)\}$, for $S, T \in A(V)$.
Q. 3 (a) Let V be a finite dimensional vector space over F, then prove that $T \in A(V)$ is invertible if and only if the constant term of the minimal polynomial for T
is not zero.
(b) Let W_{1} and W_{2} be two subspace of a finite dimentional vector space V. Then prove that $\operatorname{dim}\left(W_{1}+W_{2}\right)=\operatorname{dim}\left(W_{1}\right)+\operatorname{dim}\left(W_{2}\right)-\operatorname{dim}\left(W_{1} \cap W_{2}\right)$.

Q. 4 Write answer of following questions.

1. Show that span $\{(1,0,1),(-1,2,3),(0,1,-1)\}$ is all of R^{3}.
2. Let W_{1} and W_{2} are subspace of a vector space V. Then show that $W_{1} \cap W_{2}$ and $W_{1}+W_{2}$ are subspace of V.

SECTIGN: II

Q. 5 (a) If $\lambda \in F$ is a characteristic root of $T \in A(V)$, then prove that for any polynomial $q(x) \in F[x], q(\lambda)$ is a characteristic root of $q(T)$.
(b) Show that $\operatorname{det}(A B)=\operatorname{det}(A) \cdot \operatorname{det}(B)$, for $A, B \in F_{n}$. Is it true for $A, B \in F_{n}$ $\operatorname{det}(A+B)=\operatorname{det}(A)+\operatorname{det}(B)$?
Q. 6 (a) Prove that the determinant of a triangular matrix is the product of its entries on the main diagonal.
(b) For each $i=1,2, \ldots \ldots, k \quad V_{i} \neq(0)$ and $V=V_{1} \oplus V_{2} \oplus \ldots . . \oplus V_{k}$. Then prove that the minimal polynomial of T_{i} is $q_{i}(x)^{t_{i}}$.
Q. 7 (a) If two rows of any matrix are equal then prove that its determinant is zero.
(b) If $T \in A(V)$ has all its characteristic roots in F , then prove that there is a basis of V in which the matrix of T is triangular.

Q. 8 Write answer of following questions.

1. Define trace of a mairix. Let $A, B \in M_{n}(F)$ then show that $\operatorname{tr}(A B)=\operatorname{tr}(B A)$.
2. State Cramer's rule and hence soive the following system.
$x+2 y+3 z=-5$
$2 x+y+z=-7$
$x+y+z=0$
