\qquad
\qquad

SEVENTH SEMESTER B.TECH. (ENGINEERING) DEGREE EXAMINATION DECEMBER 2009

EE 04705 (B)—NUMERICAL ANALYSIS AND OPTIMIZATION TECHNIQUES (2004 admissions)

Time : Three Hours
Maximum : 100 Marks
Answer all questions.

Section I

1. Find a root of the equation: $x^{3}-4 x-9=0$, using Bisection method in four stages.
2. Using Newton's forward formula, find the value of $f(1.6)$ if

$x:$	1	1.4	1.8	2.2
$f(x)$	3.49	4.82	5.96	6.5

3. Given $y^{\prime}=x-y^{2}$ and $y(0)=0$. Determine the value of $y(1)$ by Milne's predictorcorrector method
4. Find the real root of the equation $x \log _{10} x=1.2$ by Newton-Raphson method correct to 3 decimal places.
5. What is a dual problem of an LPP? Write the dual of the following LPP:

Maximize $z=10 x_{1}+13 x_{2}+19 x_{3}$ subject to the constraints

$$
6 x_{1}+5 x_{2}+3 x_{3} \leq 26,4 x_{1}+2 x_{2}+5 x_{3} \leq 7 \text { and } x_{1}, x_{2}, x_{3} \geq 0
$$

6. What is an artificial variable? What is the use of it in LPP?
7. Explain the difference between transportation problem and assignment problem.
8. What are the basic features of a dynamic programming problem?

$$
[8 \times 5=40 \text { marks }]
$$

Section II

1. (a) Use Lagrange's interpolation formula to find the value of y when $x=10$ from the following data.

x	5	6	9	11
y	12	13	14	16

(h) By Relaxation method, solve the system of equations:

$$
\begin{equation*}
9 x-2 y+z=50, \quad x+5 y-3 z=18,-2 x+2 y+7 z=19 \tag{8marks}
\end{equation*}
$$

Or
2. (a) Find the real root of the equation $x^{3}-2 x-5=0$ that lies between 2 and 3 by Regula-falsi method correct to 3 decimal places.
(b) Solve the following system of equations by Crout's method:

$$
\begin{equation*}
2 x-3 y+10 z=3,-x+4 y+2 z=20, \quad 5 x+2 y+z=-12 \tag{7marks}
\end{equation*}
$$

3. From the following table, find the value of x for which $f(x)$ is maximum in the given range of x. Also find the maximum value of $f(x)$.

x	9	10	11	12	13	14
$f(x)$	1330	1340	1320	1250	1120	930

(15 marks)
Or
4. a) Employ Picard's method to obtain correct to three decimal places, solution for the differential equation $y^{\prime}=y^{2}+x^{2}$ for $x=0.4$ given that $y(0)=0$. (7 marks)
b) Find the value of $y(0.2)$ using Runge-Kutta method of fourth order given that $y^{\prime}=y-x$ and $y(0)=2$ taking $h=0.1$.
(8 marks)
5. A firm manufactures three types of products, A, B and C. The profits are Rs.3, Rs. 2 and Rs. 4 respectively. The firm has two machines M_{1} and M_{2} and below is the required processing time in minutes for each machine for each product.

Product

		A		B
Machine	M_{1}	C		
	M_{2}	4	3	5
	2	4		

Machines M_{1} and M_{2} have 2000 and 2500 machine-minutes respectively. The firm must manufacture 100 units of product $A, 200$ units of product B and 50 units of product C but not more than 150 units of A. Formulate an LPP to maximize the profit.
(15 marks)
6. Solve the LPP by simplex method:

$$
\begin{align*}
& \text { Maximize } z=6 x_{1}+8 x_{2} \text { subject to the constraints } \\
& 5 x_{1}+10 x_{2} \leq 60,4 x_{1}+4 x_{2} \leq 30 \text { and } x_{1}, x_{2} \geq 0 \tag{15marks}
\end{align*}
$$

7. Solve the following transportation problem:

Destination							
Source		A	B	C	D		Availability
	1	21	16	25	13	11	
	II	17	18	14	23	13	
	III	32	27	18	41	19	
		6	10	12	15	43	

Requirement
(15 marks)
Or
8. Four jobs are to be done on four different machines. The cost (in rupees) of performing i-th job on the j-th machine is given in the table below. Assign the jobs to different machines so as to minimize the total cost.

> Machine

		M_{1}	M_{2}		M_{3}		M_{4}
	$\mathrm{~J}_{1}$	15	11	13	15		
	$\mathrm{~J}_{2}$	17	12	12	13		
	$\mathrm{~J}_{3}$	14	15	10	14		
	$\mathrm{~J}_{4}$	16	13	11	17		

(15 marks)
$[4 \times 15=60$ marks]

