D 1226

(Pages : 3)

Name.....

Reg. No.....

SEVENTH SEMESTER B.TECH. (ENGINEERING) DEGREE EXAMINATION DECEMBER 2009

EE 04 705 (B)-NUMERICAL ANALYSIS AND OPTIMIZATION TECHNIQUES

(2004 admissions)

Time : Three Hours

Maximum : 100 Marks

Answer all questions.

Section I

- 1. Find a root of the equation: $x^3 4x 9 = 0$, using Bisection method in four stages.
- 2. Using Newton's forward formula, find the value of f(1.6) if

x : 1 1.4 1.8 2.2 f(x): 3.49 4.82 5.96 6.5

- 3. Given $y' = x y^2$ and y(0) = 0. Determine the value of y(1) by Milne's predictorcorrector method
- 4. Find the real root of the equation $x \log_{10} x = 1.2$ by Newton-Raphson method correct to 3 decimal places.

5. What is a dual problem of an LPP? Write the dual of the following LPP:

Maximize $z = 10x_1 + 13x_2 + 19x_3$, subject to the constraints

 $6x_1 + 5x_2 + 3x_3 \le 26$, $4x_1 + 2x_2 + 5x_3 \le 7$ and $x_1, x_2, x_3 \ge 0$

- 6. What is an artificial variable? What is the use of it in LPP?
- 7. Explain the difference between transportation problem and assignment problem.
- 8. What are the basic features of a dynamic programming problem?

 $[8 \times 5 = 40 \text{ marks}]$

Section II

 (a) Use Lagrange's interpolation formula to find the value of y when x=10 from the following data.

x	5	6	9	11	
у	12	13	14	16	

(7 marks)

Turn over

(b) By Relaxation method, solve the system of equations: 9x-2y+z=50, x+5y-3z=18, -2x+2y+7z=19.

Or

- 2. (a) Find the real root of the equation $x^3 2x 5 = 0$ that lies between 2 and 3 by Regula-falsi method correct to 3 decimal places. (8 marks)
- (b) Solve the following system of equations by Crout's method: 2x-3y+10z=3, -x+4y+2z=20, 5x+2y+z=-12. (7 marks)
- 3. From the following table, find the value of x for which f(x) is maximum in the given range of x. Also find the maximum value of f(x).

x	9	10	11	12	13	14	-
f(x)	1330	1340	1320	1250	1120	930	

(15 marks)

(8 marks)

Or

4. a) Employ Picard's method to obtain correct to three decimal places, solution for the differential equation $y' = y^2 + x^2$ for x = 0.4 given that y(0) = 0. (7 marks)

b) Find the value of y(0.2) using Runge-Kutta method of fourth order given that y' = y - x and y(0) = 2 taking h=0.1. (8 marks)

5. A firm manufactures three types of products, A, B and C. The profits are Rs.3, Rs.2 and Rs.4 respectively. The firm has two machines M₁ and M₂ and below is the required processing time in minutes for each machine for each product.

Product

A B C

			20	0	
Machine	M 1	4	3	5	
Machine	M2	2	2	4	
				1	1

Machines M_1 and M_2 have 2000 and 2500 machine-minutes respectively. The firm must manufacture 100 units of product A, 200 units of product B and 50 units of product C but not more than 150 units of A. Formulate an LPP to maximize the profit. (15 marks) 6. Solve the LPP by simplex method:

Maximize $z = 6x_1 + 8x_2$ subject to the constraints $5x_1 + 10x_2 \le 60$, $4x_1 + 4x_2 \le 30$ and $x_1, x_2 \ge 0$ (15 marks)

3

7. Solve the following transportation problem:

Job

			Desti	nation			
		A	B	С	D		
	I	21	16	25	13	11	Munipational
Source	II	17	18	14	23	13	Availability
	III	32	27	18	41	19	I & V CLEAND LALLOY
		6	10	12	15	43	
		Re	equiren	nent		tion n	(15 marks)

Or

8. Four jobs are to be done on four different machines. The cost (in rupees) of performing it h job on the jth machine is given in the table below. Assign the jobs to different machines so as to minimize the total cost.

	M_1	M_2	M_3	M4
J1	15	11	13	15
J ₂	17	12	12	13
J3	14	15	10	14
J4	16	13	11	17
		and the second second		

Machine

(15 marks)

 $[4 \times 15 = 60 \text{ marks}]$