D	1	2	2	4
	-	desired	diam'r.	-

(Pages: 2)

N	am	e.																		

Reg. No....

SEVENTH SEMESTER B.TECH. (ENGINEERING) DEGREE EXAMINATION, DECEMBER 2009

EE 04 703—CONTROL SYSTEMS—II

(2004 admissions)

Time: Three Hours

Maximum: 100 Marks

Answer all questions.

- 1. (a) Discuss the limitations of phase plane method of analysis of non-linear systems.
 - (b) Show that the following non-linear system,

$$\dot{x}_1 = -x_1 + 2x_2, \, \dot{x}_2 = -2x_1 - x_2 + x_2^2$$

is asymptotically stable in the region $V(x) = x_1^2 + x_2^2 \le 1$.

- (c) State Popov's criterion.
- (d) Differentiate between asymptotic stability and exponential stability.
- (e) Define the terms controllability and observability.
- (f) List out the signficance of performance Index on the design of systems.
- (g) Distinguish between pole position sensitivity and KHN roct sensitivity.
- (h) What do you mean by robust control?

 $(8 \times 5 = 40 \text{ marks})$

2. (a) Determine the describing function for a non-linear element characterised by the response $y = ar + br^3$ to a sinusoidal input signal $r(t) = R \sin wt$.

Or

(b) Determine the region of stability for non-linear system

$$\mathbf{X}^{\circ} = \begin{bmatrix} 0 & 1 \\ -2 & -3 \end{bmatrix} x + \begin{bmatrix} 0 \\ -2x_2^3 \end{bmatrix}$$

where
$$x = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$
. Take $V^{\circ}(X) = -(x_1^2 + x_2^2)$.

3. (a) Explain in detail about Shultz-Gibson variable gradient method.

Or

(b) (i) Examine the stability of the system by Krasovskii's theorem $\dot{x}_1 = -x_1$

$$\dot{x}_2 = x_1 - x_2 - x_2^3$$

(8 marks)

(ii) State and prove Krasovskii's theorem.

(7 marks)

Turn over

4. (a) Design a state feedback controller for a discrete time system with the poles placed at $z=0.25\pm0.25j$

$$x (K+1) = \begin{bmatrix} 0 & 1 \\ -0.5 & 1 \end{bmatrix} x(K) + \begin{bmatrix} 0 \\ 1 \end{bmatrix} u(K)$$
and $y [K] = [0.5 \ 1] x (K)$.

$$Or$$

- (b) Transfer function of a plant is given by $G(s) = \frac{(s+3)}{s^3 + 7s^2 + 14s + 8}$. It is desired to place the observer poles at -5, -6, -8. Design an observer for the plant.
- 5. (a) Explain in detail about direct kinematic problem.

Or

(b) Discuss in detail about the design of robust PID controllres.

 $(4 \times 15 = 60 \text{ marks})$