\qquad

SIXTH SEMESTER B.TECH. (ENGINEERING) DEGREE EXAMINATION, JUNE 2009

EE 04 606-ELECTRICAL ENGINEERING DRAWING

(2004 admissions)
Time : Three Hours
Maximum : 100 Marks
I. (a) Develop simple lap winding for DC machine having 36 armature conductors and 6 poles. Also show connections to equilizer ring.
Or
(b) Develop three-phase spiral or concentric winding for an AC machine having 24 slots one conductor per slot and 4 poles.
II. (a) (i) Draw the line diagram for the outdoor type distribution substation from double pole structure to L.T.
(ii) Draw the complete layout for 220 kV substation.

Or

(b) Draw the full sectional elevation, sectional plan, sectional side view elevation of a 3ϕ transformer for the given below dimensions. Show clearly the method of fixing the core and yoke:
Core 3 step construction:
Core dia. $=22 \mathrm{~cm}$.
Height of core $=48 \mathrm{~cm}$.
Height of yoke $=25 \mathrm{~cm}$.
Centre to centre distance between the cores $=35 \mathrm{~cm}$.
III. Draw the following views of the DC machine commutator assembly :
(i) The front elevation to be half in section.
(ii) The end elevation half in section for the given below dimensions.

Use any suitable scale :
Diameter of commutator $=13 \mathrm{~cm}$.
Length of the commutator $=11.8 \mathrm{~cm}$.
Diameter of the shaft $=4 \mathrm{~cm}$.
Segment pitch with mica $=0.6 \mathrm{~cm}$.
Mica thickness $=0.1 \mathrm{~cm}$.
Clearly indicate the dimensions.

