\qquad

SEVENTH SEMESTER B.TECH. (ENGINEERING) DEGREE EXAMINATION, JUNE 2010

EC/IC/AI $04705 \mathrm{~F}-N U M E R I C A L$ ANALYSIS
 (2004 Admissions)

Time : Three Hours
Maximum : 100 Marks
Answer all questions.

Section I

I. 1 Show that the equation $\log _{e} x=x^{2}-1$ has exactly two real roots between 0.45 and 1 .

2 Find an interactive formula to find \sqrt{N} where N is a positive number and hence find $\sqrt{5}$.
3 Explain the convergence of relaxation method.

4 Find the largest eigen value of $\left[\begin{array}{ll}4 & 1 \\ 1 & 3\end{array}\right]$ by power method.

5 Prove that $\Delta=\frac{1}{2} \delta^{2}+\sqrt[\delta]{1+\frac{\delta^{2}}{4}}$.
6 Obtain the function whose first difference is $9 x^{2}+11 x+5$.
7 Using Taylor series method compute the solution of $y^{\prime}=x+y, y(0)=1$ at $x=0.2$ correct to three decimal places.

8 Explain Milne's predictor corrector method.

Section II

II. (a) (i) Solve $x e^{x}-2=0$ correct to three decimal places by Newton-Raphson method. (7 marks)
(ii) Starting with $x_{0}=4.5, x_{1}=5.5$ and $x_{2}=5$ solve $x^{3}-13 x-12=0$ by Muller's method.
(b) (i) Find a real root of the equation $2 x-\log x=6$ correct to three decimal places by method of false position.
(ii) Use Bairstow's method to determine the roots of $0.7 x^{3}-4 x^{2}+6.2 x-2=0$. (8 marks)
III. (a) (i) Solve $x-y+z=1,3 x-2 y+3 z=6,2 x-5 y+4 z=5$ by Gauss Jordan method. (7 marks)
(ii) Solve $5 x+2 y+z=12, x+4 y+2 z=15, x+2 y+5 z=20$ by Jacobi's method.

Or
(b) (i) Solve the system :

$$
x+y+z=2,2 x+3 y-2 z=-4, x-2 y+4 z=17 \text { Crout's method. }
$$

(7 marks)
(ii) Solve the system of non-linear equations $x^{2}+y=11, y^{2}+x=7$.
IV. (a) (i) Find the missing term in the following table :-

x	$:$	1	2	3	4	5	6	7
y	$:$	2	4	8	-	32	64	128

(ii) Find the value of $\cos (1.747)$ using the values given in the table below :

x	$:$	1.7	1.74	1.78	1.82	1.86	
y	$:$	0.9916	0.9857	0.9781	0.9691	0.9584	(8 marks)

(b) (i) Use Lagrange's interpolation formula to find $f(x)$ given :

$$
f(5)=12 f(6)=13, f(9)=14 \text { and } f(11)=16
$$

Also find $f(10)$.
(7 marks)
(ii) Use Trapezoidal rule to evaluate $\int_{0}^{1} x^{3} d x$ considering fire subintervals.
(8 marks)
V. (a) Solve the initial value problem $\frac{d y}{d x}=x^{2}-y ; y(0)=1$ to find $y(0.4)$ using Adam's Bashforth method starting solutions required are to be obtained using Runge-Kutta method of order 4 using step value $h=0.1$.
Or
(b) Solve the boundary value problem:

$$
\frac{\partial u}{\partial t}=\frac{\partial^{2} u}{\partial x^{2}}
$$

Using the condition $u(0, \mathrm{t})=0, u(1, t)=0$ and $u(x, 0)=\sin \pi x \quad 0 \leq x \leq 1$ taking $h=0.2$ and $k=0.02$.
(15 marks)
[$4 \times 15=60$ marks]

