(Pages: 2)

Name.....

Reg. No.....

SIXTH SEMESTER B.TECH. (ENGINEERING) DEGREE EXAMINATION, MAY 2012

EC 09 605—OPTICAL COMMUNICATION

(2009 admissions)

Time: Three Hours

Maximum: 70 Marks

Part A

Answer all questions.

Each question carries 2 marks.

- 1. What is diffraction?
- 2. Define Quantum Efficiency.
- 3. What are the advantages of IM direct detection system?
- 4. What is WDM?
- 5. What is the frequency limit of optical fiber?

 $(5 \times 2 = 10 \text{ marks})$

Part B

Answer any four questions. Each question carries 5 marks.

- 6. Explain about graded index fiber.
- 7. If a typical light detector produces 40 μS of current for 80 μW of incident light, what is the responsivity. Comment on the significance of the term responsitivity in optical detection.
- 8. What is ISI? Explain.
- 9. Explain about optical amplifier.
- 10. Explain about V number in optical fibers.
- 11. What is degradation due to fibre dispersion?

 $(4 \times 5 = 20 \text{ marks})$

Part C

Answer all questions.

Each question carries 10 marks.

12. (a) Derive the Maxwell's equation for a circularly symmetric step index optical fiber.

Or

(b) Discuss about dispersion in single mode and multimode fibers.

Turn over

2/

13. (a) Draw the construction, operation and features of Laser diode.

0

- (b) Describe the structure and operation of PIN.
- 14. (a) Explain about the coherent homodyne IM direct detection system.

Or

- (b) Describe the degradation induced by nonlinear effects in fiber propagation.
- 15. (a) Discuss the operation of erbium doped fiber amplifier.

Or

(b) Describe the operation of SONET.

 $(4 \times 10 = 40 \text{ marks})$