D 30949		(Pages: 2)	Name
			Reg. No
	FIFTH SEMESTER B.7	TECH. (ENGINEERING) OCTOBER 2012	DEGREE EXAMINATION
	EC 09 5	01—DIGITAL SIGNAL PRO	CESSING
		(2009 scheme)	
Time	: Three Hours		Maximum : 70 Marks
		Part A	
		Answer all questions.	
Short	t answer questions :		
1.		of Discrete Fourier series.	
2.		·	$0 = \{1, 1, 2, 2\}$ and $x_2(n) = \{1, 2, 3, 4\}$.
3.			(=, =, =, =, =, =, =, =, =, =, =, =, =, =
4.	****		•
. 5.	. What is meant by pipelining	g ?	
			$(5 \times 2 = 10 \text{ marks})$
	•	Part B	
		Answer any four questions.	•
1.	State and prove associative	law of convolution.	
2.	. Compute the DFTs of the se	quence $x(n) = \cos \frac{n \pi}{2}$, where N	I = 4, using Decimation in Frequency
	FFT algorithm.		
3.	. Explain limit cycle behaviou	r of filter.	
4.		terized by the difference equation $y(-1) = 12$. Determine the d	tion $y(n) = 0.9 y(n-1) x(n)$ with eadband of the system.
5.	. Compare bilinear transform	nation with other transformation	ns based on their stability.
6.	Explain the working of mult	iplier in Harvard architecture.	
			$(4 \times 5 = 20 \text{ marks})$
		Part C	
1.	Find the convolution of the t	two signals $x(n) = u(n)$ and $h(n)$	$= a^n u(n), \text{ ROC}: a < 1; n \ge 0.$
		Or	

 $\mathbf{X}(k) = \left\{20, -5.828 - j\ 2.414, 0, -0.172 + j\ 0.414, 0, -0.172 + j, 0.414, 0, -5.282 + j\ 2.414\right\}$

2. Given:

find x(n) using IFFT.

Turn over

3. Draw the Direct form I and Direct form II structures of:

$$H(z) = \frac{3 + 5z^{-1} - 8z^{-2} + 4z^{-5}}{2 + 3z^{-1} + 6z^{-3}}$$

Or

4. Develop the cascade and parallel forms for the transfer function:

$$H(z) = \frac{8z^3 - 4z^2 + 11z - 2}{(z - \frac{1}{4})(z^2 - z + \frac{1}{2})}$$

5. What is an optimal linear phase filter? What parameters are optimized in these filters? Explain.

Or

- 6. Explain analog frequency transformation and write the transformation formulae for LPF, HPF, BPF and band stop filter.
- 7. What are the main limitations of shared memory architectures? Discuss different approaches in overcoming or reducing these limitations.

Or

8. Explain scheduling of inner loops in FFT processors.

 $(4 \times 10 = 40 \text{ marks})$