N	ame	•••	•••	•••	••	••	••	•	•	• •	•	•	• •	 •	•	•	•	••	•

Reg. No.....

SEVENTH SEMESTER B.TECH. (ENGINEERING) DEGREE EXAMINATION, JUNE 2010

(Pages : 2)

CE 04-702—DESIGN OF HYDRAULIC STRUCTURES

Time : Three Hours

C 5462

Maximum : 100 Marks

Answer all questions.

Part A

- 1. (a) Discuss the modes of failure of a gravity dam.
 - (b) Derive the expression for the thickness of an arch dam usign thin cylinder theory.
 - (c) Differentiate between surplus weir surplus escape and flush escape.
 - (d) Briefly explain modular, semimodular and non-modular outlets.
 - (e) Discuss the various factors in the site selection of weirs and barrages.
 - (f) Explain how a suitable type of fall is selected at a particular location.
 - (g) Discuss the conditions favourable for the selection of a syphon aqueduct.
 - (h) Discuss various factors in selecting a suitable type of cross drainage work.

 $(8 \times 5 = 40 \text{ marks})$

Part B

(a) Design a suitable surplus work of a tank whose estimated flood discharge is 30 m.³/s. It is decided to store water in the tank to a level of +22.00 m. above M.S.L. The maximum water level is +22.60 m. The general ground level at the proposed site is +21.00 m. and the ground level below the proposed work slopes off till it reaches +20.00 m. in about 6 m. distance.

Top width of tank bund is 2.00 m. at level + 24.00 m., with 2:1 side slopes on either side. Provision may be made to store water upto MWL at times of necessity. Good soil for foundation is available at +19.00 m.

Design :

	(a)	Length and cross-section of weir.	(10 marks)
	(b)	Abutments, wing walls and returns.	(10 marks)
	(c)	U/s and downstream aprons.	(10 marks)
an	d dı	raw to a suitable scale :	
	(i)	Half plan at foundation level and half plan at top.	(15 marks)
(ii	(ii)	Section across weir.	(15 marks)

Or

(b) Design a cross drainage work to suit the following hydraulic data :---

Canal :

	Discharge	=	20 cumecs
	Bed level	=	+ 15.00
	Bed width	=	18 m.
	F.S.L.	=	+ 17.00 m.
	Ultimate bed level	=	+ 14.75 m.
	Ultimate FSL	=	+ 17.75 m.
	Velocity of flow	=	0.5 m/s
	Canal bank top width	=	2 m. on both sides
	Top bund level	=	+ 18.50 m.
Dra	in :		a contentar tradi
	Catchment area	=	5 sq.km.
	B.L. of drain	=	+ 13.00 m.

Hard soil at = +12.00 m.

Assume Ryve's coefficient as 15. Design :

(a) The waterway for aqueduct.

(b) Barrel roof.

MFL

(c) Transition and bank connections.

Draw to a suitable scale :

(i) Longitudinal section along the canal.

(ii) Half plan at top and half at foundation.

= + 14.00

(60 marks)