(Pages: 2)

Name.....

Reg. No.....

SEVENTH SEMESTER B.TECH. (ENGINEERING) DEGREE EXAMINATION JUNE 2009

CE 04 704-COMPUTATIONAL METHOD AND OPERATIONS RESEARCH

(2004 admissions)

Time : Three Hours

C 56410

Maximum : 100 Marks

Answer all questions.

- I. (a) Describe briefly the successive approximation method.
 - (b) Explain about false position method.
 - (c) Explain Jacobi's method for determining Eigenvalues and vectors.
 - (d) Explain the lagrangian interpolation concept.
 - (e) Explain about numerical integration using Simpsons formulae.
 - (f) Explain Taylor series method for determining numerical solution of ordinary differential equations.
 - (g) Explain duality in Linear programming problems.
 - (h) What do you mean by degeneracy ?

 $(8 \times 5 = 40 \text{ marks})$

- II. (a) Find the root of the equations correct to three decimal places by method of false position :
 - (i) $x^3 4x 9 = 0$
 - (ii) $x = \cos x$
 - (iii) $x \tan x = -1$

Or

(b) Find the roots of the equations correct to three decimal places using Newton/Raphson method :

(i)
$$x^3 - 3x - 5 = 0$$
; (ii) $3x - 1 = \cos x$.

(15 marks)

III. (a) The following data are :

Temperature ^o C	:	140	150	160	170	180
Pressure (kg/cms)	:	3.685	4.854	6.302	8.076	10.225

using Newton's formulae find pressure of steam for a temperature of 142°C.

Or

(b) Given the values :

 $x \rightarrow 0 \quad 2 \quad 3 \quad 6$ $f(x) \rightarrow -4 \quad 2 \quad 14 \quad 158$

(15 marks)

Turn over

IV. (a) Find the value of $\int_{1}^{2} \frac{dx}{x}$ by Simpson's rule. Hence find approximate value of loge².

Or

- (b) Evaluate $\int_{0}^{1} \frac{dx}{1+x}$ correct to 3 decimals by trapezoidal rule with h = .5, .25 and 0.125.
 - (15 marks)
- V. (a) A manufacturer wants to ship 8 loads of his product as shown below. The matrix gives mileage from origin 0 to Destination (D).

	А	В	С	Available
Х	50	30	220	1
Y	90	45	170	3
Z	250	200	50	4
Requirement	4	2	2	

Shipping costs are Rs. 10 per road mile. What shipping should be used ?

Or

(b) Maximize $Z = 3x_1 + 2x_2$

subject to $x_1+x_2\leq 4$. $x_1-x_2\leq 2$

(15 marks) $[4 \times 15 = 60 \text{ marks}]$