\qquad
\qquad

THIRD SEMESTER B.TECH. (ENGINEERING) DEGREE EXAMINATION, DECEMBER 2009

CE 04 305-SURVEYING-II

(2004 Admissions)

Time : Three Hours

Maximum : 100 Marks
Answer all questions.
Part A

1. (a) What is meant by subtense bar? How is it used in the field to find the horizontal distance between two points?
(b) How will you set a curve by offsets from back targent?
(c) What is meant by towers and signals? Explain them briefly.
(d) Explain the concept of satellite station.
(e) What is meant by spherical axcess? Explain its significance in figure adjustment.
(f) Discuss the terrestrial co-ordinate system.
(g) Derive relationships between siderial time interval and mean time interval.
(h) What is meant by phototheodolite? How is it used?
$(8 \times 5=40$ marks $)$

Part B

2. (a) (i) Explain the method of determining tacheometric constants.
(ii) Two distances of 20 m and 100 m were accuralely measured out and the intercepts on the staff between the outer stadia webs were 0.196 m at the former distance and 0.996 m at latter. Calculate the tacheometric constants.
(8 marks)
Or
(b) (i) Differentiate between vertical and horizontal subtense method of tachometery.
(5 marks)
(ii) The vertical angles of vanes fixed at 0.5 m and 3.5 m above the foot of the stafi held vertically at a point were $-0^{\circ} 30^{\prime}$ and $+1^{\circ} 12^{\prime}$ respectively. Find the horizontal distance and the reduced level of the point, if the level of the instrument axis is 125.5 m above Datum.
3. (a) (i) Deduce a condition for well conditioned triangle.
(ii) Explain the concept of extension of base through base net.
Or
(b) Direction are observed from a satellite station $5,62.18 \mathrm{~m}$ from station C with the following results:-

$$
\mathrm{A} 0^{\circ} 1^{\prime} 0^{\prime \prime} ; \mathrm{B}, 71^{\circ} 54^{\prime} 32^{\prime \prime} ; \mathrm{C}, 296^{\circ} 12^{\prime} 2^{\prime \prime}
$$

The approximate lengths of AC and BC are respectively 8041 m and 10864 m . Calculate the angle ACB.
(15 marks)
4. (a) Find the chronometer ever from the following data for ex meridian observations taken on a star of the meridian.

Latitude of the place	$=55^{\circ} 0^{\prime} 10.34^{\prime \prime} \mathrm{N}$
Mean observed altitude of the star	$=37^{\circ} 46^{\prime} 28^{\prime \prime} .65$
R.A. of the star	$=16^{h} 39^{m} 44.78^{s}$
Declination of the star	$=18^{\circ} 0^{\prime} 31.9^{\prime \prime}$

Mean siderial time recorded by the chronometer $=13^{h} 24^{m} 15^{s}$
(15 marks)
Or
(b) Discuss the various methods of determining a zimuth.
5. (a) The following reciprocal observations were made from two points P and Q.

Horizontal distance between P and Q	$=6996 \mathrm{~m}$
Angle of elevation of Q at P	$=1^{\circ} 56^{\prime} 10^{\prime \prime}$
Angle of depression of P at Q	$=1^{\circ} 56^{\prime} 52^{\prime \prime}$
Height of signal at P	$=4.07 \mathrm{~m}$
Height of signal at Q	$=3.87 \mathrm{~m}$
Height of instrument at P	$=1.27 \mathrm{~m}$
Height of instrument at Q	$=1.48 \mathrm{~m}$

Find the difference in level between P and Q and the refraction correction. $R \sin 1^{\prime \prime}=30.88 \mathrm{~m}$.
(15 marks)
Or
(b) (i) Differentiate between Terrestrial photogrammetry and axial photogrammetry. (5 marks)
(ii) Discuss various methods of planimetric mapping from vertical aerial slot photograph.

