T	0	0	0	1
U	L	ð	2	ı

(Pages 2)

Name	••••••
------	--------

Reg. No.....

THIRD SEMESTER B.TECH. (ENGINEERING) DEGREE EXAMINATION, DECEMBER 2009

CE 04 305—SURVEYING—II

(2004 Admissions)

Time: Three Hours

Maximum: 100 Marks

Answer all questions.

Part A

- 1. (a) What is meant by subtense bar? How is it used in the field to find the horizontal distance between two points?
 - (b) How will you set a curve by offsets from back targent?
 - (c) What is meant by towers and signals? Explain them briefly.
 - (d) Explain the concept of satellite station.
 - (e) What is meant by spherical axcess? Explain its significance in figure adjustment.
 - (f) Discuss the terrestrial co-ordinate system.
 - (g) Derive relationships between siderial time interval and mean time interval.
 - (h) What is meant by phototheodolite? How is it used?

 $(8 \times 5 = 40 \text{ marks})$

Part B

2. (a) (i) Explain the method of determining tacheometric constants.

(7 marks)

(ii) Two distances of 20 m and 100 m were accurally measured out and the intercepts on the staff between the outer stadia webs were 0.196 m at the former distance and 0.996 m at latter. Calculate the tacheometric constants.

(8 marks)

Or

(b) (i) Differentiate between vertical and horizontal subtense method of tachometery.

(5 marks)

(ii) The vertical angles of vanes fixed at 0.5 m and 3.5 m above the foot of the staff held vertically at a point were - 0° 30′ and + 1° 12′ respectively. Find the horizontal distance and the reduced level of the point, if the level of the instrument axis is 125.5 m above Datum.

(10 marks)

3. (a) (i) Deduce a condition for well conditioned triangle.

(8 marks)

(ii) Explain the concept of extension of base through base net.

(7 marks)

Or

(b) Direction are observed from a satellite station 5, 62.18 m from station C with the following results:—

The approximate lengths of AC and BC are respectively 8041 m and 10864 m. Calculate the angle ACB.

(15 marks)

4. (a) Find the chronometer ever from the following data for ex meridian observations taken on a star of the meridian.

Latitude of the place

 $= 55^{\circ} 0' 10.34'' N$

Mean observed altitude of the star

 $= 37^{\circ} 46' 28''.65$

R.A. of the star

 $= 16^h 39^m 44.78^s$

Declination of the star

 $= 18^{\circ} 0' 31.9''$

Mean siderial time recorded by the chronometer = $13^h 24^m 15^s$

(15 marks)

Or

(b) Discuss the various methods of determining a zimuth.

(15 marks)

5. (a) The following reciprocal observations were made from two points P and Q.

Horizontal distance between P and Q = 6996 m

Angle of elevation of Q at P

 $= 1^{\circ} 56' 10''$

Angle of depression of P at Q

 $= 1^{\circ} 56' 52''$

Height of signal at P

= 4.07 m

Height of signal at Q

and the state of

= 3.87 m

Height of instrument at P

= 1.27 m

Height of instrument at Q

= 1.48 m

Find the difference in level between P and Q and the refraction correction. R $\sin 1'' = 30.88m$.

(15 marks)

Or

- (b) (i) Differentiate between Terrestrial photogrammetry and axial photogrammetry. (5 marks)
 - (ii) Discuss various methods of planimetric mapping from vertical aerial slot photograph.

(10 marks)

 $4 \times 15 = 60$ marks