Mathematics

Paper 1: Differential Equations, Abstract Algebra and Real Analysis
Time: 3 hours
Max.Marks:80

SECTION - A

Answer ALL questions.
$4 \times 15=60$

1. a) i) Solve $x \cos x \frac{d y}{d x}+(x \sin x+\cos x) y=1$
ii) Solve $p^{2}+2 p y \cot x=y^{2}$
(7marks)
or
b) i) Solve $\frac{d y}{d x}\left(x^{2} y^{3}+x y\right)=1$
(8marks)
ii) Solve $y+p x=p^{2} x^{4}$
2. a) i) Solve $\left(D^{2}-3 D+2\right) y=\cos \left(e^{-x}\right)$ by the method of variation of parameters.
ii) Solve $\left(D^{2}+9\right) y=\cos ^{3} x$
(7marks)
or
b) i) Solve $\left(D^{2}+4\right) y=x \sin x$
(8marks)
ii) Solve $3 x^{2} \frac{d^{2} y}{d x^{2}}+x \frac{d y}{d x}+y=x$
(7marks)
3. a) i) State and prove Lagrange's theorem on Groups
ii) Show that a finite semi group satisfying cancellation laws is a group. (7marks)
or
b) i) State and prove Cayley's theorem on Permutation Groups
ii) Show that $G=\left\{x=2^{a} 3^{b} / a, b \in Z\right\}$ is a group under multiplication. (7marks)
4. a) i) Prove that the sequence $\left\{S_{n}\right\}$ defined by
$S_{n}=1+\frac{1}{1!}+\frac{1}{2!}+\frac{1}{3!}+\cdots \cdots \cdots \cdots+\frac{1}{n!}$ is convergent.
ii) If $\left\{S_{n}\right\}$ is a Cauchy sequence then show that $\left\{S_{n}\right\}$ is convergent.
or
b) i) State and prove Cauchy's $\mathrm{n}^{\text {th }}$ root test.
ii) Test for convergence $\sum \frac{x^{n}}{x^{n}+a^{n}}(x>0, a>0)$
SECTION - B

Answer any FOUR Questions

5. Solve $y\left(x y+2 x^{2} y^{2}\right) d x+x\left(x y-x^{2} y^{2}\right) d y=0$.
6. Find the orthogonal trajectories of the family of rectangular hyperbolas $\mathrm{xy}=a^{2}$ where ' a ' is the parameter.
7. Solve $\left(D^{2}-3 \mathrm{D}+2\right) \mathrm{y}=\cosh \mathrm{x}$.
8. Solve $\left(D^{2}-2 \mathrm{D}+1\right) \mathrm{y}=\mathrm{x}^{2} \mathrm{e}^{3 \mathrm{x}}$
9. State and prove fundamental theorem on groups.
10. If f is a homomorphism of a group G in to a group G ' then prove that kernel of f is a normal sub group of G.
11. If $\left\{\mathrm{a}_{\mathrm{n}}\right\}$ is a sequence defined by $a_{1}=1, \mathrm{a}_{\mathrm{n}+1}=\frac{2 \mathrm{a}_{\mathrm{n}}+3}{4}$ for $\mathrm{n} \geq 1$. Show that $\left\{\mathrm{a}_{\mathrm{n}}\right\}$ is increasing sequence and find its limit.
12. Test for convergence $\sum_{n=1}^{\infty} \frac{1}{2^{n}+3^{n}}$
