#### **MATHEMATICS**

# Paper 2: Solid Geometry, Abstract Algebra and Real Analysis

Time: 3 hours Max Marks: 80

### SECTION - A

Answer all the FOUR questions. Each question carries 15 marks.

4X15=60

1. a) i) Show that every finite integral domain is a field.

(8marks)

ii) Show that the characteristic of an integral domain is either zero or prime.

(7 marks)

(Or)

b) i) Show that the ring of integers is a principal ideal ring.

(8marks)

- ii) If f is a homomorphism of a ring R into the ring  $R^1$  then show that f is an into isomorphism if and only if ker  $f = \{0\}$  (7 marks)
- 2. a) i) If  $f:[a,b] \to R$  is continuous on [a,b] then show that f is Uniformly continuous on [a,b]. (8marks)
  - ii) Prove that  $\frac{\pi}{6} + \frac{\sqrt{3}}{15} < \sin(0.6) < \frac{\pi}{6} + \frac{1}{8}$  (7 marks)

(Or)

b) i) State and prove Cauchy's mean value theorem.

(8marks)

ii) Determine the constants a and b so that the function defined by

f(x) = 2x + 1 if  $x \le 1$ ,  $ax^2 + b$  if  $1 \le x \le 3$ , 5x + 2a if  $x \ge 3$  is continuous everywhere.

(7 marks)

3. a) i) if  $f:[a,b] \to R$  is monotonic on [a,b] then show that f is integrable on [a,b].

(8marks)

ii) if  $f(x) = x^3$  is defined on [0,a] show that  $f \in R([0,a])$  and  $\int_0^a f(x) dx = \frac{a^4}{4}$ 

(7 marks)

(or)

b) i) State and prove fundamental theorem of integral calculus.

(8marks)

- ii) Prove that  $\frac{1}{\pi} \le \int_0^1 \frac{\sin \pi x}{1+x^2} dx \le \frac{2}{\pi}$ . (7 marks)
- 4. a) i) Find the S.D. between the lines  $\frac{x-3}{3} = \frac{y-8}{-1} = \frac{z-3}{1}$  and  $\frac{x+3}{-3} = \frac{y+7}{2} = \frac{z-6}{34}$ .

Find also the equations and the points in which the S.D. line meets the givenlines. (8marks)

ii) A Variable plane is at a constant distance 3p from the origin and meets the coordinate axes in A, B, C. Show that the locus of the centroid of the  $\triangle$  ABC is  $x^{-2} + y^{-2} + z^{-2} = p^{-2}$  (7 marks)

(Or)

- b) i) Show that the plane 14x 8y + 13 = 0 bisects the obtuse angle between the planes 3x + 4y 5z + 1 = 0& 5x + 12y 13z = 0 (8marks)
  - ii) Find the equation of the sphere which touches the plane 3x + 2y z + 2 = 0 at (1, -2, 1) and cuts orthogonally the sphere  $x^2 + y^2 + z^2 4x + 6y + 4 = 0$ . (7 marks)

#### SECTION - B

## Answer any FOUR Questions

4x5 = 20

- 5. Show that a field has no proper ideals.
- 6. If f is a homomorphism of a ring R in to a ring R' then prove that kernel of f is an ideal of R.
- 7. Examine the continuity of the function **f** defined by  $f(x) = \lim_{n \to \infty} \frac{x^n}{1 + x^n e^x} \quad \forall x \ge 0$
- 8. Show that the function  $f(x) = x \sin(1/x)$  if  $x \ne 0$ , f(x) = 0 if x = 0 is continuous at x = 0 but not differentiable at x = 0
- 9. If  $f(x) = x^2$  on [0,1] and  $p = \left\{0, \frac{1}{4}, \frac{2}{4}, \frac{3}{4}, 1\right\}$  then compute L(p, f) and U(p, f).
- 10. State and prove first mean value theorem of integral calculus.
- 11. Find the image of the point (2, -1, 3) in the plane 3x 2y + z = 9.
- 12. Find the limiting points of the coaxial system defined by the Spheres

$$x^2 + y^2 + z^2 + 4x + 2y + 2z + 6 = 0$$
 and  $x^2 + y^2 + z^2 + 2x - 4y - 2z + 6 = 0$