[03 - 4118]

IV/IV B.E. DEGREE EXAMINATION

First Semester

Mechanical Engineering

STATISTICAL QUALITY CONTROL

(Effective from the admitted batch of 2006-2007)

Time: Three hours

Maximum: 70 marks

Question No. 1 is compulsory.

Answer any FOUR from the remaining.

All questions carry equal marks.

Answer to questions No. 1 must be at one place.

Use of statistical tables is permitted.

- 1. (a) Sum of Type-I and Type-II errors is equal to one. Do you agree or not? Why?
 - (b) Name the control charts used for 'Off-line quality control'.
 - (c) Explain the goal post philosophy used prior to Taguchi loss function approach.
 - (d) What are appraisal costs?
 - (e) What is out-of-control run length?
 - (f) What is process capability ratio?
 - (g) How do you find ASN for a double sampling plan?

(a) How do you arrive at 3.4 ppm defectives in six sigma quality? (6)
(b) A quality engineer is given the option to choose a control chart from the following:
(i) n=5 h=1 hr k=2.99
(ii) n=6 h=2 hr k=3.05

If the engineer wants to choose the chart with minimum Type-I errors, what, should be his/her preference? (8)

- 3. (a) Distinguish between Variables and Attributes. (4)
 - (b) What is a standardized p-chart? Explain its construction and advantages. (10)
- (a) What is C_{pk}? When is it preferred over C_p? Why?
 (4)
 - (b) A process is in control with $\bar{x} = 75$ and $\bar{s} = 2$. The process specifications are at 80 ± 8 . The sample size n = 5.
 - (i) Estimate the potential capability
 - (ii) Estimate the actual capability. (10)
- 5. (a) Explain RQL and AQL. (4)
 - (b) Draw OC curve for the single sampling plan n = 100, C = 2. (10)

- 6. (a) Distinguish between ATI and ASN.
 - (b) Find the ASN for the following double sampling plan if incoming quality is 2%

$$n_1 = 100$$
 $c_1 = 1$ $r_1 = 4$ $r_2 = 100$ $c_2 = 4$ $r_2 = 5$. (10)

(4)

- 7. Explain the Deming's philosophy. (14)
- 8. Write short notes on any two of the following:
 - (a) Off-line quality control with suitable example.
 - (b) Process capability using control charts.
 - (c) Industrial applications of control charts.