[03 - 3112]

III/IV B.E. DEGREE EXAMINATION.

First Semester

Mechanical Engineering

ENGINEERING THERMO DYNAMICS - II

(Common with Dual Degree Program in Mechanical Engineering)

(Effective from the admitted batch of 2006-2007)

Time: Three hours

Maximum: 70 marks

Question No. 1 is compulsory.

Answer any FOUR from the remaining.

Use the Steam Tables Refrigeration Tables, Mollier and P-h charts is permitted.

- 1. Answer the following:
 - (a) What is the use of steam tables?
 - (b) Define Gibbs-Daltor law.
 - (c) Classify steam nozzles.
 - (d) What is meant by compounding in steam turbines?

- (e) What are the sources of air leakage in condenser?
- (f) Draw the Bell-Coleman cycle on T-S diagram.
- (g) Define degree of saturation
- (a) Derive the equation for dryness fraction using bucket Calorimeter.
 - (b) Steam at a pressure of 5-4 bar and dryness fraction 0.8 expands in a cylinder reversibly and isothermally to a pressure of 1 bar. Find
 - (i) final condition of steam
 - (ii) charge in internal energy
 - (iii) charge of entropy
 - (iv) heat transferred and
 - (v) work done per kg of steam
- 3. (a) Explain the principle of regenerative cycle and derive the equation for work done.
 - (b) A vessel contains at 1 bar and 20°C, a mixture of 1 mole of CO₂ and 4 moles of air. Calculate for the mixture

- (i) the masses of CO₂, O₂ and N₂ and the total mass
- (ii) the percentage carbon content by mass
- (iii) the apparent molecular weight and the gas constant for the mixture and
- (iv) the specific volume of the mixture.

The volumetric analysis of air can be taken as 21% oxygen and 79% nitrogen.

- 4. (a) Derive the equation for mass of steam discharged through a steam nozzle.
 - (b) Steam at a pressure of 10 bar and 0.9 dry discharges through a nozzle having throat area of 450 mm². If the back pressure is 1 bar, find
 - (i) final velocity of the steam and
 - (ii) cross-sectional area of the nozzle at exit for maximum discharge.

- 5. (a) With a neat sketch, explain the working of Parson's reaction turbine.
 - (b) The velocity of steam at inlet to a simple impulse turbine is 1000 m/s and the nozzle angle is 20°. The mean blade speed is 400 m/s and the blades are symmetrical. The mass flow rate of steam is 0.75 kg/s. The friction effects on the blades are negligible. Estimate
 - (i) the blade angles
 - (ii) the tangential force on the blades
 - (iii) the axial thrust
 - (iv) the diagram power and
 - (v) the diagram efficiency.
 - 6. (a) Explain the working of a parallel flow low level jet condenser.
 - (b) The air leakage into a surface condenser operating with a steam turbine is estimated as 84 kg/hr. The vacuum near the inlet of air pump is 700 mm of Hg when barometer reads 760 mm of Hg. The temperature at inlet of vacuum pump is 20°C. Calculate

- 5. (a) With a neat sketch, explain the working of Parson's reaction turbine.
 - (b) The velocity of steam at inlet to a simple impulse turbine is 1000 m/s and the nozzle angle is 20°. The mean blade speed is 400 m/s and the blades are symmetrical. The mass flow rate of steam is 0.75 kg/s. The friction effects on the blades are negligible. Estimate
 - (i) the blade angles
 - (ii) the tangential force on the blades
 - (iii) the axial thrust
 - (iv) the diagram power and
 - (v) the diagram efficiency.
 - 6. (a) Explain the working of a parallel flow low level jet condenser.
 - (b) The air leakage into a surface condenser operating with a steam turbine is estimated as 84 kg/hr. The vacuum near the inlet of air pump is 700 mm of Hg when barometer reads 760 mm of Hg. The temperature at inlet of vacuum pump is 20°C. Calculate

- the minimum capacity of the air pump in M³/hr
- (ii) the dimensions of the reciprocating air pump to remove the air if it runs at 200 r.p.m Take L/D ratio = 1.5 and volumetric efficiency = 100% and
- (iii) the mass of vapour extracted per minute.
- 7. (a) Describe the working of electrolux refrigerator.
 - (b) In a standard vapour compression refrigeration cycle, operating between evaporator temperature of -10°C and a condenser temperature of 40°C, the enthalpy of the refrigerant, Freon-12 at the end of compression is 220 kJ/kg. Calculate
 - (i) the COP of the cycle and
 - (ii) the refrigerating capacity and the compressor power assuming a refrigerant flow rate of 1 kg/min.

- (a) Explain the working of central air conditioning system.
 - (b) The sling psychrometer in a laboratory test recorded as dry bulb temperature = 35°C and wet bulb temperature = 25°C. Calculate the following:
 - (i) Specific humidity
 - (ii) relative humidity
 - (iii) vapour density in air
 - (iv) dew point temperature and
 - (v) enthalpy of mixute per kg of dry air.