[03-2112]

II/IV B.E. DEGREE EXAMINATION.

First Semester

Mechanical Engineering
MECHANICS OF SOLIDS – I

(Common with Dual Degree Program in Mechanical Engineering)

(Effective from the admitted batch of 2006-2007)

Time: Three hours

Maximum: 70 marks

Question No. 1 is compulsory.

Answer any FOUR from the remaining.

All questions carry equal marks.

Answer the following:

 $(7\times 2=14)$

- (a) What is differential thermal expansion? Give an example for a system hich undergoes this expansion.
- (b) Draw the Mohr's circle diagram for shaft of circular section carrying twisting moment.

- (c) What is pure bending? Give an example.
- (d) What is pure state of shear? Give an example of a member in the state of pure shear.
- (e) Determine the maximum deflection of cantilever with an end point load by moment area method.
- (f) Write the relations that represent generalized Hooke's law.
- (g) Define the terms
 - (i) deformation and
 - (ii) distortion.
- 2. (a) Prove that the state of simple shear produces pure tensile and compressive stresses across planes inclined at 45° to those of pure shear.

(7)

(b) Derive the equation for determining the change in volume of a cylindrical shell under internal pressure, p. (7)

- 3. (a) An I section beam of flanges 200 mm × 20 mm and web 300 mm × 10 mm is acted on by a shearing force of 150 kN.

 Determine
 - (i) maximum and minimum shearing stresses in the web
 - (ii) maximum shear stress in the flange and
 - (iii) the shear stress at a layer 60 mm below the top of the section.

Show the above stresses in the stress distribution diagram. (8)

(b) The rectangular stress components at a point P in a structural part are, $\sigma_{xx} = 4 \, \mathrm{MPa}$, $\sigma_{yy} = 1 \, \mathrm{MPa}$ and $\tau_{xy} = 3 \, \mathrm{MPa}$. Determine graphically using Mohr's circle diagram the principal stresses, principal planes and principal shears. (6)