[06 - 4124]

IV / IV B.E. DEGREE EXAMINATION.

First Semester

Electrical and Electronics Engineering

Elective: ADVANCED CONTROL SYSTEMS

(Effective from the admitted batch of 2006–2007)

Time: Three hours Maximum: 70 marks

First question is compulsory.

Answer any FOUR from the remaining.

All questions carry equal marks.

- 1. (a) What is Null position in synchro? What are the applications of synchro?
 - (b) What is the function of Amlidyne. Explain its characteristics and give one application.
 - (c) What are the conditions to be satisfied for state controllability and observability?
 - (d) List the properties of State Transition Matrix (STM).
 - (e) Give the frequency domain specifications.
 - (f) Write briefly on pole placement by state feedback.
 - (g) When is lead compensation preferred over lag compensation? Give reasons.

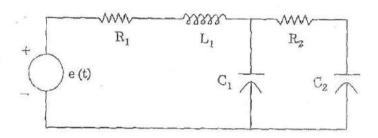
- (a) Explain the procedure for the design of phase-lead compensator using Root locus method.
 - (b) A unity feedback system has an open loop transfer function G(s) given by $G(s) = \frac{k}{s(s+1)}.$

Design a lead compensator for the system to meet the following specifications:

Damping ratio = 0.7; Settling time = 1.4 seconds and velocity error constant $K_v = 2$ (seconds)-1.

- 8. Write short notes on the following:
 - (a) Metadyne operation and characteristics.
 - (b) State model for linear continuous time systems.
 - (c) Cascade compensation in time domain.

- 2. (a) Give the block diagram and hence the transfer function of armature and field controlled d.c. servo motor.
 - (b) Explain the principle of operation of stepper motor and give its application in control systems.
- 3. (a) Describe the construction, explain the principle of operation and give its applications of magnetic amplifier.
 - (b) Explain how a synchro can be used as a position error detector.
- 4. (a) Find the state transition matrix of a system whose plant matrix is given by


$$A = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}.$$

(b) A system is represented by $\dot{X} = \begin{bmatrix} -3 & -2 \\ 1 & 0 \end{bmatrix} X + \begin{bmatrix} 1 \\ 0 \end{bmatrix} u \quad \text{with} \quad X(0) = 0$ $Y = \begin{bmatrix} 0 & 1 \end{bmatrix} X.$

Find:

- (i) the damping ratio of the system
- (ii) the natural frequency of the system
- (iii) the percentage overshoot for u(t) = 1.0 and
- (iv) y(t) for all $t \ge 0$.

5. (a) Obtain the state variable model for the system given below.

(b) Find the observability of the system given below.

$$\begin{bmatrix} \dot{X}_1 \\ \dot{X}_2 \\ \dot{X}_3 \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & -2 & -3 \end{bmatrix} \begin{bmatrix} X_1 \\ X_2 \\ X_3 \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} u$$

- 6. (a) What are the situations calling for compensation in a feedback control system? Enumerate them in detail with examples.
 - (b) Design a phase-lag network for the unity feedback control system whose open loop transfer function is given by $\frac{k}{s(1+0.2s)^2}$ to meet the following specifications.
 - (i) $K_{x} = 23 \sec^{-1}$
 - (ii) Phase margin ≥ 45°.