[06 - 3219]

III/IV B.E. DEGREE EXAMINATION.

Second Semester

Electrical and Electronics Engineering
TRANSMISSION AND DISTRIBUTION

(Effective from the Admitted Batch of 2006-2007)

Time: Three hours Maximum: 70 marks

Question No. 1 is compulsory.

Answer any FOUR from the remaining.

All questions carry equal marks.

- 1. (a) Explain the advantages of HVDC transmission over EHVAC transmission.
 - (b) Explain briefly about transposition of power lines.
 - (c) Explain clearly the Ferranti effect.
 - (d) List out different methods of reducing corona loss.

- 8. (a) What is Corona? Explain the corona formation in detail.
 - (b) A certain 3-\phi equilateral transmission line has a total corona loss of 53 kW at 106 kV and a loss of 98 kW at 110.9 kV. What is the disruptive critical voltage? What is the corona loss at 113 kV?

- (e) What is Sag-template? Explain how this is useful for location of towers and stringing of power conductors.
- (f) Obtain the expression for insulation resistance of a cable.
- (g) Explain about strain type insulator.
- (a) Explain the technological development is control and protection for better performance and reliability of DC transmission system.
 - (b) For a fixed power of transmission, explain how the economic choice of voltage level is selected in DC transmission system.
- 3. (a) What is meant by firing angle delay and commutation delay? Draw the circuit diagram, voltage and current wave forms of greatz circuit when $\alpha = 30^{\circ}$ and $\mu = 15^{\circ}$.
 - (b) A bridge connected rectifier fed from 238 kV/110 kV transformer from 238 kV supply. Calculate the direct voltage output when the commutation angle is 20° and delay angle is 60°.

- 4. (a) Find the A, B, C, D parameters of a 3- ϕ 80 km, 50 Hz transmission line with series impedance of (0.15 + j 0.78) ohm per km and a shunt admittance of j 5.0×10⁻⁴ mho/km.
 - (b) Derive the A, B, C, D parameters of medium line from nominal T-method.
- 5. (a) With reference to long transmission line, give physical interpretation of the terms of characteristic impedance and propagation constant.
 - (b) Explain the classification of lines based on their length of transmission.
- 6. (a) Is sag a necessity or an evil? Discuss and what are the mechanical principles should be followed while designing the transmission line.
 - (b) Derive the sage magnitude when supports are at equal levels.
- 7. (a) A string at 6 insulator units has mutual capacitance 10 times the capacitance to ground. Determine the voltage across each unit as a traction of operating voltage. Also determine string efficiency.
 - (b) What are the basic tests to be carried out on insulators?