[06 - 3217]

III/IV B.E. DEGREE EXAMINATION.

Second Semester

Electrical and Electronics Engineering

ADVANCED NETWORK THEORY

(Effective from the admitted batch of 2006-2007)

Time: Three hours

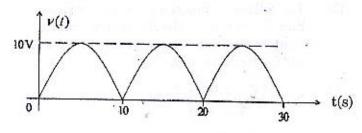
Maximum: 70 marks

Question 1 is compulsory.

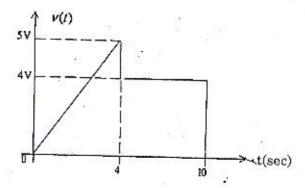
Answer any FOUR from the remaining.

All questions carry equal marks.

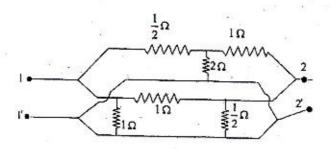
- (a) State convolution theorem.
 - (b) How is the location of zeros and poles in s-plane related to network response in time domain?
 - (c) What is scaling of network function?
 - (d) Explain computation of residues.
 - (e) Explain elementary network synthesis operations.
 - (f) What is minimum Positive Real Function (PRF)?
 - (g) Is the following polynomial Hurwitz?


$$F(s) = s^5 + 8s^4 + 24s^3 + 8s^2 + 23s + 6.$$

No.1 website for Andhra University Students


- 6. An impedance function is given by $Z(s) = \frac{8(s^2 + 1)(s^2 + 3)}{s(s^2 + 2)(s^2 + 3)}$ Realise the network in Foster-I and Cauer-II forms.
- 7. (a) Explain Brune's method of RLC synthesis.
 - (b) Find the Brune's network realisation of the impedance function:

$$Z(s) = \frac{5s^2 + 18s^2 + 8}{s^2 + s + 10}$$


- (a) Discuss the properties of RL and RC admittance functions.
 - (b) Determine the Fourier series of the output voltage of a full wave rectifier shown in the figure below:

- (a) Define Laplace transform and Fourier transform. Derive the relationship between them.
 - (b) Synthesize the voltage wave form given below in time domain and find its Laplace transform.

- 3. (a) Define and explain open circuit and short circuit network functions of a 2-port network.
 - (b) Obtain the Y-parameters for the following circuit.

- (a) Show that the Fourier Transform of an impulse train in time is an impulse train in frequency.
 - (b) An R-L series circuit is excited by a unit ramp voltage of V(t) = t. If $R = 1\Omega$, L = 1H, determine the response.
 - by using convolution of input and impulse response and
 - (ii) By direct method.
- (a) What are Hurwitz polynomials? List out their properties and mention how polynomials are tested for Hurwitz character.
 - (b) The following functions are not positive real. Find out which of the necessary conditions of positive realness is not satisfied by each of the following functions.

(i)
$$\frac{(s^2+1)(s^2+2)}{s(s^2+3)}$$

(ii)
$$\frac{s^3 + s^2 + 2s + 1}{s + 4}$$

(iii)
$$\frac{s^2 + 2s + 1}{s^2}$$

(iv)
$$\frac{s^3 + 7s^2 + 15s + 9}{s^4 + 6s^2 + 9}$$