[06 - 2203]

II/IV B.E. DEGREE EXAMINATION.

Second Semester

Electrical and Electronics Engineering
ANALOG ELECTRONIC CIRCUITS

(Common with Electronics and Communication Engineering and EIE)

(Effective from the admitted batch of 1999-2000 and after batches)

Time: Three hours Maximum: 70 marks

Question no. 1 is compulsory.

Answer any FOUR questions from the remaining.

All questions carry equal marks.

- 1. (a) What is the need of a difference amplifier?
 - (b) What is the effect of—ve feedback on gain?
 - (c) Write the advantages of crystal oscillators.
 - (d) What are the advantages of push pull amplifier?

- 7. (a) Draw the block diagram of operational amplifier. Explain in detail.
 - (b) A differential amplifier has a differential gain (A_d) of 100, the input voltages applied are $V_1 = 1$ mV and $V_2 = 0.9$ mV.

Calculate the output voltage for

- (i) CMRR = 100
- (ii) CMRR = 1000
- (iii) CMRR = 10000.
- 8. (a) Describe the logarithmic amplifier with neat sketches.
 - (b) Design a weighted summer using Op-Amp that provides $V_0 = 2V_1 + V_2 4V_3$.

- (e) What is the need of heat sinks in power amplifiers?
- (f) List the ideal characteristics of Op-Amp.
- (g) What is CMRR? Define.
- (a) With neat diagram, explain the working of
 2-stage RC coupled amplifier
 - (b) Explain high frequency operation of FET and derive the expression for gain bandwidth product with necessary diagrams.
- (a) Find the input and output resistance of a amplifier that employs voltage series feedback.
 - (b) An amplifier with —ve feedback has a voltage gain of 120. It is found that without feedback, an input signal of 60 mV is required to produce a particular output, where as with feedback the input signal must be 0.5 V to get the same output. Find the A_V and β of the amplifier. (4)
 - (c) Mention the advantages of ve feedback. (3)

- 4. (a) What are the types of LC tuned oscillators
 Explain any one with neat figure and with
 necessary equations.
 - (b) In a Harpits oscillator $L_1 = 5\mu H$, $L_2 = 15\mu H$ and $C = 0.01\mu F$. Calculate:
 - (i) Frequency of oscillations
 - (ii) If 'C' is doubled, find the new frequency.
- 5. (a) Explain about class AB power amplifier with neat sketches.
 - (b) Calculate the harmonic distortion components of an output signal having fundamental amplitude of 2.5 V, 2nd harmonic amplitude of 0.25V and 3rd harmonic amplitude 0.1 V and 4th harmonic amplitude 0.05V and also calculate the total harmonic distortion for the amplitude component given above.
 - 6. (a) What is the use of using transformers in a tuned circuit?
 - (b) What is meant by stragger tuning? Explain.
 - (c) What are the differences between single and stragger tuning?