[06 - 2110]

II/IV B.E. DEGREE EXAMINATION.

First Semester

Electrical and Electronics Engineering

ELECTROMAGNETICS

(Common with Dual Degree Programme in EEE)

(Effective from the admitted batch of 2006–2007)

Time: Three hours Maximum: 70 marks

Question No. 1 is compulsory.

Answer any FOUR questions from the remaining.

All questions carry equal marks.

- 1. (a) Define Gauss law in integral form.
 - (b) What is polarization of dielectric?
 - (c) What is vector magnetic potential?
 - (d) Define Faraday's laws of electromagnetics.
 - (e) What is perfect dielectric? Give an example.
 - (f) Define energy store in magnetic field.
 - (g) Write a note on method of images.

- 2. (a) Define electric potential. Derive an expression for electrical potential at a point p which 'x' distance from a plate with charge q. Assume suitable dimensions.
 - (b) Find electric filed density in the region about a uniforms line charge of 8 nC/m lying along the z-axis in free space.
- 3. (a) Derive the expression for energy density in the electrostatic fields.
 - (b) A co-axial conductor has radii $\alpha=0.8$ mm and b=3 mm and Polystyrene dielectric for which $\epsilon_R=2.56$. If $P=\frac{2}{\rho}\alpha_\rho\,\mathrm{nC/m^2}$ in the dielectric find
 - (i) D and E as function of ' ρ '
 - (ii) V_{ab} and χ_e .
 - (iii) If there are 4×10^{19} molecule/cubic meter in the dielectric, find $P(\rho)$.
- (a) State and explain Biot-Savarts law with relative expressions.
 - (b) A solid conductor of a circular cross section is made of a homogenine non-magnetic material. If the radii is 2 mm, the conductor axis lies on the z-axis and the total current in the a_z direction is 20 A.

Find:

- (i) H_{Q} at P = 0.5 mm
- (ii) B_{Q} at P = 0.8 mm
- (iii) Total magnetic flux inside the conductor
- (iv) The total magnetic flux outside the conductor.
- 5. (a) Write the comparison between electrostatic and magnetostatics.
 - (b) Derive the magnetostatic boundary conditions.
- 6. (a) Explain the properties of magnetic material in detail.
 - (b) Derive expression for the divergence and curl of 'H'.
- 7. (a) Derive expression for Maxwell's equations in point and integral form.
 - (b) Explain inductance, mutual inductance and energy in magnetic fields.
- 8. (a) Explain the concept of wave propagation in dielectric medium.
 - (b) Explain Poynting vector and power consideration.