[06 - 2110]

HAV B.E. DEGREE EXAMINATION.

First Semester

Electrical and Electronics Engineering

ELECTRO MAGNETICS

(Common with M.S. (E.E.E))

(w.e.f. admitted batch of 2006-07)

Time: Three hours Maximum: 70 marks
Answer question No.1 and any other FOUR questions.

All questions carry equal marks.

- 1. (a) State Ampere's law.
 - (b) State Lenz's law.
 - (c) What is displacement current density?
 - (d) How are the unit vectors defined in cylindrical coordinate systems?
 - (e) Find the velocity of a plane wave in a lossless medium having a relative permittivity of 5 an relative permeability of unity.
 - (f) Define polarization.
 - (g) Give the relation between attenuation constant, phase constant and propagation constant.

2. (a) Determine the curl of these vector fields (10)

(i)
$$P = x^2 yz \overline{a}x + xz \overline{a}z$$
.

(ii)
$$Q = \rho \sin \phi \, \bar{a} \rho + \rho^2 z \, \bar{a}_{\phi} + Z \cos \phi \, \bar{a}_{z}$$
.

(iii)
$$T = \frac{1}{r^2} \cos \theta \, \overline{a}_r + r \sin \theta \cos \phi \, \overline{a}_\theta + \cos \theta \, \overline{a}_\phi.$$

- (b) Find the gradient of the following scalar fields: (4)
 - (i) $V = e^{-z} \sin 2x \cosh y.$
 - (ii) $U = p^2 z \cos 2\phi.$
- 3. (a) Derive Poisson's and Laplace's equations from fundamentals.
 - (b) Given the potential field $V = 5x^2yz + ky^3z$.
 - (i) Determine K so that Laplace's equation is satisfied.
 - (ii) For this value of K, specify the direction of E at (2, -1, 1) by a unit vector.
- 4. Derive the boundary conditions at the charge interface of two dielectric media.

- 5. Derive an expression for the magnetic field intensity at a point "P" in a medium of permeability " μ " due to an infinitely long current carrying conductor at a distance "r" meters from the point.
- 6. State and explain Faraday's Law of electro magnetic induction. Also, derive expressions for statically and dynamically induce emfs.
- 7. Derive Maxwell's equation in point form and integral using Ampere's law and Gauss's Law.
- (a) Discuss the significance and applications of Poyinting theorem.
 - (b) Explain the utility of poyinting vector? If the peak poyinting vector in free space is 10 w/m² find the amplitudes of electric and magnetic fields.