[00 - 4104]

II/IV B.E. DEGREE EXAMINATION.

First Semester

ELECTRONICS AND COMMUNICATION ENGINEERING

MATHEMATICS - III

(Common for all branches Except Chemical Engineering and Bio-Technology Common MSEEE)

(w.e.f. the admitted batch of 2004-2005 and after batches)

Time : Three hours

1.

Maximum : 70 marks

Answer Part A and Four questions from Part B of Seven questions.

All questions carry equal marks.

Questions of Part A must be answered at one place.

PART A

- (a) If \overline{A} is a constant vector and $\overline{R} = x i + y j + z k$ then find $\frac{div}{\overline{A} \times \overline{R}}$.
- (b) Find the directional derivative of $2x^2y^2 + 5z$ at (-1, 1, 2) in the direction 3i - 2j = k.
- (c) What is meant by flux?

Generated by CamScanner

(d) Form the partial differential equation by (e) Write down the assumptions for one (a) Find the angle between the surfaces \wedge (f) Write down the Fourier sine and Fourier (b) Prove that (a) Evaluate 9 eliminating the arbitrary function from Write the relation between Fourier and dimensional wave equation. z = y f(x) + x g(y). $x^{2} + y^{2} + z^{2} = 9$ and $z = x^{2} + y^{2} - 3$ at the $\sqrt{2}$ cosine integrals. point (2, -1, 2). $div(\overline{A} \times \overline{B}) = \overline{B} \cdot curl \ \overline{A} - \overline{A} \cdot curl \ \overline{B} = \overline{B} \cdot curl \ \overline{A} - \overline{A} \cdot curl \ \overline{B} = \overline{B} \cdot curl \ \overline{B} = \overline{B} \cdot curl \ \overline{A} - \overline{A} \cdot curl \ \overline{B} = \overline{B} \cdot curl \ \overline{A} - \overline{A} \cdot curl \ \overline{B} = \overline{B} \cdot curl \ \overline{B} = \overline{B} \cdot curl \ \overline{A} - \overline{A} \cdot curl \ \overline{B} = \overline{B} \cdot curl \ \overline{B} = \overline{B} \cdot curl \ \overline{A} - \overline{A} \cdot curl \ \overline{B} = \overline{B} \cdot curl \ \overline{B} = \overline{B} \cdot curl \ \overline{B} \cdot curl \ \overline{A} - \overline{A} \cdot curl \ \overline{B} = \overline{B} \cdot curl \ \overline{B} \cdot curl \ \overline{B} = \overline{B} \cdot curl \ \overline{A} - \overline{A} \cdot curl \ \overline{B} \cdot curl \ \overline{B} = \overline{B} \cdot curl \ \overline{$ Laplace transforms. of the cylinder $x^2 + y^2 = 16$ in the first octant between z = 0 and z = 5 $\overline{F} = zi + xj - 3y^2 zk$ where S is the surface PART B $F \cdot \overline{n} dS$ where

N

(b) Using Green's theorem show $C: r = \alpha \left(1 - \cos \theta\right),$ $\int (x y^2 dy - x^2 y dx = \frac{35}{16} \pi a^4 \text{ where}$ that

ço 4

00 7 0 CT (a) Find the Fourier cosine transform of e^{-x^2} (b) Find the finite Fourier sine transform of f(x) = 2x, 0 < x < 4. by Using Parseval's identity show that , (a) Express the function $f(x) = \begin{cases} 1 & \text{for } |x| \le 1, \\ 1 & \text{for } |x| \le 1 \end{cases}$ An insulated rod of length L has its ends A and maintained at 0°C and 100°C respectively until steady state conditions prevail. If B is sudder temperature at a distance x from A at time t. (b) Solve $(D^2 - DD' + D' - 1)z = \cos(x + 2y)$ (a) Solve $(D^2 + 3DD' + 2D'^2)z = x + y$. reduced to 20°C and maintained at 20°C, find to (a) Express the vector field 2yi - zj + 3x kspherical polar coordinate system. (b) Solve yzp + zxq = xy: $\int_{0}^{\frac{1}{2}} \frac{xe}{(t^2+1)^2} = \frac{\pi}{4}.$ ٥ر بر $\int \frac{\sin \lambda \cos \lambda x}{d \lambda} d\lambda$ Fourier integral. Hence evaluate $\begin{bmatrix} 0 & for & |x| > 1, \end{bmatrix}$ Ge

4

[05 - 2102]

co

[05 - 2102]