[07 - 3113]

III/IV B. Tech. DEGREE EXAMINATION.

First Semester

Computer Science and Engineering

FORMAL LANGUAGES AND AUTOMATA THEORY

(Common with I.T.)

(Effective from the admitted batch of 2004–2005 and after batches)

Time: Three hours Maximum: 70 marks

First question is compulsory.

Answer any FOUR of the remaining questions.

All questions carry equal marks.

Answer all parts of any questions at one place.

- (a) Differentiate moore and mealy machines.
 - (b) Give the regular expression for set of all strings whose 2nd symbol from right end is 1 and 4th symbol from right end is zero.
 - (c) What is ambiguity in CFG?

- (d) Give the necessary conditions required for convert CFG to CNF.
- (e) Give the any four closure properties of CFL.
- (f) Define decidability and undecidability.
- (g) Write the ID of LBA.
- 2. (a) Construct DFA for the language L, $L = \{w : |w| \mod 5 \neq 0\} \text{ over the alphabet } \{a, b\}.$
 - (b) Convert the following ε -NFA into DFA

- 3. (a) Construct right and left-linear grammar for the language $L = \{a^n b^m : n \ge 2, m \ge 3\}$.
 - (b) Let R be a regular expression. Then there exists some non deterministic finite accepter that accepts L(R). Consequently, L(R) is regular language.

- 4. (a) Using pumping lemma for regular sets prove that $L = \{a^m b^n/m > n\}$ is not regular.
 - (b) Consider the grammar

$$S \to (L)/a$$

 $L \to L, S/S$

Construct left most, right most and derivation trees for the following string (a((a, a), (a, a))).

- 5. (a) Construct CNF for the following grammar $E \to E + T/T$ $T \to T * F/F$ $F \to (E)/\alpha$.
 - (b) Give the closure properties of CFL.
- 6. Give the CFG for odd palindrome over the alphabet {0, 1} and design push down automate for the same.
- 7. (a) Design turing machine for accepting the strings with an equal number of 0's and 1's.
 - (b) Design turing machine that computes

$$f(m,n) = m-n$$
 if $m \ge n$
= 0 otherwise

