No#1 Website for Andhra University Students

[07 - 2217]

II/IV B. Tech. DEGREE EXAMINATION.

Second Semester

Computer Science and Engineering

DISCRETE MATHEMATICAL STRUCTURES — II

(Common with Information Technology)

(With Effective from the admitted batch of 2007-2008)

Time: Three hours

Maximum: 70 marks

First question is compulsory

Answer any FOUR from the remaining questions.

All questions carry equal marks.

- 1. (a) What is meant semi-group?
 - (b) What is meant by hashing function? Give one example.
 - (c) Describe the mathematical notation of the tuning machine?
 - (d) What is meant by FOSET? (Totally ordered set)
 - (e) Describe the properties of the Regular grammar.

No#1 Website for Andhra University Students

- (f) What is meant by Recursion? Give one example of reursive function?
- (g) What is meant by partition and covering of a set? Give one example?
- 2. (a) Let R. denote a section on the set of ordered Paris of positive integers. Such that (x,y)R(U,V) iff xv = yu. Show that R is an equivalence relation.
 - (b) What is meant by relation? Explain different properties of relation.
- 3. (a) Show whether the following relation are transitive is $R_1 = \{(1,1)\}R_2 = \{(1,2),(2,2)\}$ $R_3 = \{(1,2),(2,3),(1,3),(2,1)\}.$
 - (b) Show that the function

$$fx = \begin{cases} x/2 & \text{when } x \text{ is even} \\ (x-1)/2 & \text{when } x \text{ is odd} \end{cases}$$

is primitive recursive.

- 4. (a) Show that the function f(x,y) = x y in partial recursive.
 - (b) Let $S^1 = \{a, b\}$, show that the semigroup is $(s^{S^1}, 0)$ not commutative?
- 5. (a) State and explain the Fermat's theorem?
 - (b) State and prove Euler's theorem.

No#1 Website for Andhra University Students

- 6. (a) Show that in a lattice if $a \le b \le c$ then $a \oplus b = b * c$ and $(a * b) \oplus (b * c) = b = (a \oplus b) * (a \oplus c)$.
 - (b) Show that a chains of three or more elements is not complemented?
- 7. (a) Find the value of $x_1 * x_2 * \left[(x_1 * x_4) \oplus x_2^{-1} \oplus (x_3 * x_1^{-1}) \right]$
 - (b) Obtain the sum-of production canonical form of the Boolean expression: $(x_1 * x_2^{-1}) \oplus x_4$.
- 8. (a) Construct Tuning machine that will compute f(x,y) when f is binary addition.
 - (b) Construct the Finite Automata $\{a^nb^n|n\geq 1\}$.