[07 - 2115]

II/IV.B.Tech. DEGREE EXAMINATION.

First Semester

Computer Science and Engineering

DIGITAL LOGIC DESIGN

(Common with I.T and M.S. Software Engineering and Information Technology)

(Effective from the admitted batch of 2006–2007)

Time: Three hours Maximum: 70 marks

The First question is compulsory.

Answer FOUR from the remaining questions.

Answer all parts of any questions at one place.

All questions carry equal marks.

- 1. (a) Convert $(F5.E)_{16}$ into decimal.
 - (b) What is a binary code? List out different binary codes.
 - (c) What do you mean by register?
 - (d) Convert f(A, B, C) = (A + B)(B + C) to standard sum of product form.
 - (e) What is a repple counter?

- (f) What is a latch? Give its working principle and truth table.
- (g) What is memory? List out the different types of memories.
- 2. (a) Find the excess -3 code and its 9's complement for decimal number 392, 712, 452 and 920.
 - (b) What is logic gate? List out its various types with neat diagram.
- 3. (a) Implement the following Boolean function with NAND NAND logic:

$$y = AC + ABC + \overline{A}BC + AB + D.$$

- (b) Simplify the logic expression $y = A\overline{B} + AB + \overline{A}B$ using Karnaugh map.
- 4. (a) What is multiplexer and demultiplexer? Explain them with neat lable diagram?
 - (b) Explain 4×2 encode with neat diagram.
- 5. (a) Write the difference between a latch and flipflop.
 - (b) Design a combinational circuit that has four inputs and four outputs. The output generates the 2's complement of input binary number.

- 6. (a) Explain different types of registers with neat diagram.
 - (b) Design synchronous BCD counter with JK Flip-flops.
- 7. (a) Design the sequential circuit for the given state diagram using D flip-flop.

(b) Design the sequential circuit for the given state diagram using T flip flop.

- 8. (a) Explain the classification of Semi-conductor memories with neat lable diagram.
 - (b) What is PAL? How it differs from PROM and PLA.