[01 - 2111]

II/IV B.E. DEGREE EXAMINATION.

First Semester

Civil Engineering

ENGINEERING MECHANICS

(Effective from the admitted batch of 2007–2008)

Time: Three hours Maximum: 70 marks

Answer any FIVE questions.

First question is compulsory.

All questions carry equal marks.

- 1. (a) Define the law of parallelogram of forces.

 What is the use of this law?
 - (b) What is the different between collinear and concurrent forces?
 - (c) What are the important types of loading on a beam?
 - (d) What do you understand by axes of reference?
 - (e) State the laws of solid friction.

(f) Define:

- (i) velocity of projection
- (ii) angle of projection
- (iii) time of flight.
- (g) State the law of conservation of momentum.
- 2. (a) Three bars in one plane, hinged at their ends as shown in Fig. 1 are sumitted to the action of a force P = 100 N applied at B. Determine the magnitude of the force φ that will be necessary to apply at the hinge C in order to keep the system of ban in eqlbm in the position shown.

(b) Find the resultant of the following system of forces acting at a point:

40 N towards the east

100 N towards 30° north of east

150 N towards north

200 N towards southwest.

3. (a) Determine the C.G of a quadrant AB of the are of a circle of radius R on shown in Fig.

(b) Locate the C.G for the Shaded area

- 4. (a) State and prove the parallel axes theorem on moment of inertia for a place area.
 - (b) Determine the M.O.I. for the place area about its centroidal *x*-axes.

5. Determine the least value of P to cause motion to impend towards right. Take $\mu = 0.2$ under the block and pulley is frictionless.

- 6. (a) A stove dropped into a well in heard to strike the water after 4 sec. Find the depth of the well, if the velocity 9 sound in 350 m/s.
 - (b) A motor cyclist wants to clear the ditch shown in fig. If the ramp at B is of 25°, determine the minimum speed of the motor cycle at B.

- 7. (a) State and prove work energy principle.
 - (b) A bullet of man 25 gm, moving horizontal with a velocity of 600 m/s striker a wooden block of man 5 kg resting an a rough horizontal surface the bullet after striking the block remain buried in the block and both travels a distance of 90 cm, before coming to rest. Determine:
 - (i) the average resistance between the block and surface
 - (ii) the coefficient of friction between the block and horizontal surface.

(a) State and explain principle of virtual work. (b) The diameters of the two steps of the pulley of a weston's differential pulley block are 40 cm and 30 cm respectively. Determine the value of the effort required to lift a load of

the frictional forces.

4 KN using principle of virtual work. Neglect