### B.E. DEGREE END SEMESTER EXAMINATIONS, NOV / DEC 2012

### **Electrical and Electronics Engineering**

#### (Third semester)

### EC 9215 -ELECTRONIC DEVICES AND CIRCUITS (REGULATION - 2008)

Time: 3 hr Max. Marks: 100

# **Answer ALL Questions**

## $Part - A (10 \times 2 = 20 Marks)$

- 1. Define transition capacitance of a diode.
- 2. Differentiate avalanche and zener breakdown.
- 3. In order to operate transistor in the active region what kind of biasing is given to the junction?
- 4. For NPN transistor  $I_E = 12 \text{mA}$  and  $\beta = 140$ . Determine the value of  $\alpha$ ,  $I_B$  and  $I_C$ .
- 5. What are the requirements for biasing the circuits?
- 6. Draw the small signal model of common collector amplifier.
- 7. What happens to the circuit above and below resonance?
- 8. What is neutralization?
- 9. What are the conditions for sustained oscillator?
- 10. Write the effects of negative feedback.

for sustained oscillations.

|     | $\underline{Part - B (5 \times 16 = 80 \text{ Marks})}$                                                                                                    |      |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| 11. | Derive the expression for common mode and differential mode analysis of differential amplifier.                                                            | (16) |
| 12. | a) i) Explain the basic principle of laser diode with its neat diagram.                                                                                    | (8)  |
|     | ii) Describe how zener diode acts as a voltage regulator. (Or)                                                                                             | (8)  |
|     | b) Derive diode current equation of drift and diffusion current.                                                                                           | (16) |
| 13. | a) i) Explain input and output characteristics of common emitter configuration.                                                                            | (8)  |
|     | ii) Write the operation of NPN transistor with its neat diagram.  (Or)                                                                                     | (8)  |
|     | b) i) Sketch and explain the drain-characteristics and transfer- characteristics of p-channel JFET.                                                        | (8)  |
|     | ii) Explain construction of p- channel JFET. Give its symbol?                                                                                              | (8)  |
| 14. | a) i) Discuss how the CE amplifier producing 180° phase shift.                                                                                             | (6)  |
|     | ii) Draw the a.c equivalent of common emitter amplifier and find Ri, Ro, Av and Ai.                                                                        |      |
|     | [Vcc = 30V, R1 = 20 k $\Omega$ , R2 = 10k $\Omega$ , Rc = 5k $\Omega$ , R <sub>E</sub> = 1k $\Omega$ , R <sub>L</sub> =10k $\Omega$ and $\beta$ =100] (Or) | (10) |
|     | b) i) Draw the small signal model of JFET and derive the input impedance, output impedance an                                                              | d    |
|     | gain of common source amplifier.                                                                                                                           | (10) |
|     | ii) Find collector current and collector to emitter voltage for voltage divider bias circuit.                                                              |      |
|     | [Vcc = 15V, R1 = 22 k $\Omega$ , R2 = 4.7k $\Omega$ , Rc = 1.5k $\Omega$ , R <sub>E</sub> = 680 $\Omega$ and $\beta$ =150]                                 | (6)  |
| 15. | a) Write the operation of wein bridge oscillator and derive the feedback factor.  (Or)                                                                     | (16) |
|     | b) i) Derive the general expression for LC oscillator.                                                                                                     | (10) |

ii) A transistor RC phase shift oscillator has a frequency of 100 kHz. If R = 10 k $\Omega$  find C and gain

(6)