1					i	l i
1	1	[1
1						1 1
i		1	l	1		l

B.E. (Full-Time)DEGREE END SEMESTER EXAMINATIONS, April/May 2013 ELECTRICAL AND ELECTRONICS ENGINEERING

THIRD SEMESTER

EE9202 ELECTROMAGNETIC THEORY

(REGULATION 2008)

Time: 3 hr

Max. Marks: 100

Answer ALL Questions

PART-A (10x2=20 marks)

- 1. Differentiate non-ionizing and ionizing emf with suitable examples.
- 2. State and derive the Stroke's theorem.
- 3. Equal point charges are located at all four corners of a square. What is **E** at the centre of the square?
- 4. What is the electric field intensity inside and outside a metallic conductor?
- 5. Plot **H** field in and around a circular conductor.
- 6. State Ampere's circuital Law
- 7. Mention the limitations of circuit theory.
- 8. Explain how a material changes its behavior with frequency.
- 9. Derive for Poynting vector in free space, in general
- 10. Explain Skin Effect in conductors.

PART -B (5x16=80 marks)

- 11 What are the different ways of electromagnetic induction, explain with practical examples, derive the corresponding governing equation (both in integral and differential forms).
- 12.a State Gauss' Law. Calculate the E in around two infinitely large parallel plate when they are charged equally with same polarity.

(OR)

- 12.b Explain Dielectric polarization.
- 13.a Derive the magentostatic boundary conditions at the interface of two different magnetic media.

(OR)

- 13.b Derive the force between two parallel conductors carrying current in the same direction and in opposite direction.
- 14.a Derive the Maxwell's equations from the fundamental laws. Explain the need for displacement current.

(OR)

- 14.b Explain in detail the working principle of a DC generator. Also explain when maximum and minimum voltage will be induced.
- 15.a Derive the electromagnetic wave equations in free space. Mention the types of solutions.

(OR)

15.b Derive the transmission and reflection coefficients for the wave traveling through two different media.