B.E. DEGREE END SEMESTER EXAMINATIONS, NOV / DEC 2011 BIOMEDICAL ENGINEERING THIRD SEMESTER – (REGULATIONS 2008) EC 9251 DIGITAL ELECTRONICS AND SYSTEM DESIGN Time: 3 hrs Max. Marks: 100

<u>Answer ALL Questions</u> Part – A ($10 \times 2 = 20$ Marks)

- 1. What is an alphanumeric code? Give 2 examples.
- 2. Write the Boolean expressions for the signals (A>B), (A<B) and (A=B) where A and B are two 2-bit numbers in a 2-bit magnitude comparator.
- 3. Draw the circuit diagram of a D flip flop.
- 4. What is race around problem? How is it overcome?
- 5. Define dynamic hazard.
- 6. Define essential hazard.
- 7. A digital circuit with two inputs generates an output that is the square of the input. Draw the circuit diagram to realize the outputs using appropriate ROM.
- 8. What is an EAPROM?
- 9. What is the advantage of Totempole TTL over open-collector TTL?
- 10. Compare TTL and CMOS logic families in terms of fan out, propagation delay, power dissipation and noise margin.

<u>Part - B (5 x 16 = 80 Marks)</u>

11. (a) What are static and dynamic memories.?	(4)
(b) Explain the working of a Basic RAM cell.	(8)
(c) Draw the IC RAM (using RAM basic cells) for 4 words with	. ,
3 bits/word.	(4)

12(a). Using Quine McCluskey, obtain simplified SOP for $F(A,B,C,D,E) = \Sigma(0,2,4,6,9,13,21,23,25,29,31)$

OR

- 12(b). Explain the working of carry look ahead 4-bit adder.
- 13(a). Explain the working of a BCD ripple counter with a circuit and draw the timing diagrams.

OR

13(b). Obtain the reduced table for the following Mealy Table.

Present State	A	B	C	D	E	F	G	H	I
Next State X =	0 B	D	B	D	F	D	F	F	B
X =	1 C	B	A	E	G	F	H	Ι	E
Output X =	0 1	0	0	0	1	0	0	1	0
X =	1 1	0	1	0	1	0	1	1	0

14(a). Explain critical and non-critical races using appropriate examples.

\mathbf{n}	1	D
U	1	ĸ

14(b). Reduce the following flow table and obtain output fill.

Present	XY	·			Output
State	00	01	11	10	Z
1	(1)	2	3	-	0
2	4	2	-	5	0
3	6	_	3	7	1
4	4	8	3	-	0
5	-	8	9	(5)	1
6	6	-2	9	-	1
7	-	8	3	\bigcirc	0
8	1	8	-	5	0
9	1	-	9	5	1

15(a). Explain the working of a TTL Tristate Gate.

OR

15(b). Explain the working of CMOS Invertor, NAND and NOR gates.