	,					
I Dall Ma	1 1	, ,	, ,	J	1 1	
Roll No	1 1		1 1		I I	į 1
i I VOII I VO.	1 1				4 1	1 1
					1 1	

B.E / B.Tech. (Full Time) DEGREE END SEMESTER EXAMINATIONS, NOV / DEC 2011 Electrical and Electronics Engineering Branch

SECOND SEMESTER

PH 9167 - PHYSICS OF ELECTRICAL & ELECTRONIC MATERIALS

(REGULATIONS 2008)

Time: 3 Hrs

Max. Mark: 100

Answer ALL Questions

PART - A (10 x 2 = 20 Marks)

- 1. Define electrical conductivity.
- 2. Define mean free path.
- 3. Explain the concept of holes in semiconductors.
- 4. How are n-type and p-type semiconductors produced?
- 5. What is electronic polarisation?
- 6. What are the applications of dielectrics?
- 7. What is meant by hysteresis loss?
- 8. What is Meissner effect?
- 9. Explain electro optical effect.
- 10. Define the terms phosphorescence and fluorescence.

PART - B (16 x 5 = 80 Marks)

- 11. On the basis of free electron theory derive an expression for the electrical conductivity.
- 12.(a) Derive an expression for the density of electrons in an intrinsic semiconductors.

(OR)

(b) Derive an expression for the carrier concentration in N-type semiconductor.

13.(a) Derive the Clausius-Mosotti equation and explain its use in predicting the dielectric constant of solids.

(OR)

- (b) Discuss in detail the different types of polarization in dielectrics.
- 14.(a) Give a detailed account of Weiss theory of ferromagnetism.

(OR)

- (b) What is superconductivity? What are the applications? What is the principle of magnetic levilation?
- 15.(a) Explain the theory and working of LCD. What are the different types? Explain the advantages.

(OR)

(b) Explain the principle and working of LED with suitable band diagram.