B.E / B.Tech (Part time) DEGREE END SEMESTER EXAMINATIONS, APRIL / MAY2014

Department of Electronics and Communication Engineering

PTEC9202-Electronic circuits - I

(Regulation R2004.)

Time: 3 Hours

Answer ALL Questions

Max. Marks 100

(10)

(6)

PART-A (10 x 2 = 20 Marks)

- 1. Why class C power amplifier offers high efficiency.
- 2. Draw the frequency response of CE amplifier with and without feedback.
- 3. In a differential amplifier Ad = 52 and Ac = 0.5, find CMRR.
- 4. Draw a simple MOS current mirror and write the expression for the output current.
- 5. Define Noise margin.
- 6. A common source amplifier has Rs = 200Ω and Rin = 10k and Av = -150. Calculate Avs.
- 7. Derive output resistance of common collector amplifier.
- 8. In a MOSFET amplifier $g_m = 8mA/V$ and $r_o = 2M\Omega$ and $R_D = 4.7K\Omega$. Calculate the voltage gain of the amplifier.
- 9. For the circuit shown, write the input and output loop equations.

10. What are the factors that affect the stability of the operating point.

Part $-B(5 \times 16 = 80 \text{ marks})$

11.(i) Explain class B power amplifier and derive for its efficiency.

(ii) Define and derive for feedback.

12.a.(i) Draw a discrete common drain MOSFET amplifier and derive expressions for A_{VS} , R_{in} and R_o with equivalent circuits . (10)

(ii) Briefly explain operation of CMOS inverter. (6)

(OR)

- 12.b. Draw a NMOS inverter with resistive load and derive for V_{IL} , V_{OL} , V_{IH} and V_{OH} and hence NM_L and NM_H .
- 13.a.(i) Draw a Cascode amplifier and with equivalent circuit derive for AV. (8)
 - (ii) Draw a JFET amplifier in common gate configuration and with equivalent circuit derive for A_V, R_{in} and R_o. (8)

(OR)

13.b.(i) For the circuit shown calculate the voltage gain A_V, R_{in} and R_o.

(8) (8)

(ii) Draw a Darlington amplifier and derive for A_V and R_{in} with equivalent circuit.

14.a. Derive for stability factors S, S' and S" for voltage divider or self bias for BJT.

(OR)

14.b.(i) Briefly explain thermal stability.

(6)

- (ii) For the circuit shown calculate I_{CQ} , V_{CEQ} and I_{BQ} for hfe = 100, hfe = 300. Comment on the result. (10)
- 15.a.(i) Draw a NMOS common source amplifier with PMOS current source as active load. (4)
 - (ii) Draw the equivalent circuit of the active load and derive for the output impedance. (6)
 - (iii) Draw the equivalent circuit of amplifier and derive for its gain. (6)

(OR)

15.b.(i) Draw a MOS current steering circuit with two sink and two source terminal and derive expressions for all terminal current s in terms of reference current. (10)

(ii) For the circuit shown, derive the expressions for resistances offered by M₂ and M₃ and hence write the expressions for the voltage gain offered.

