| Register Numb | er 🗀 | | T : | | | | | | | | |--|--------------|---------|---------|--------|--------|--------|---------|---------------------------------|--------------------|--| | B.E/B.Tech (Full Time) DEGREE END SEMESTER EXAMINATIONS, APRIL/MAY 2011 ELECTRONICS AND COMMUNICATION ENGINEERING BRANCH SIXTH SEMESTER | | | | | | | | | | | | EC 9078 -EMBEDDED A | ND R | EAL T | ΓIME | SYS | | | . Maı | elea • · | 100 | | | Duration: 3 Hrs Answer A | LL Ou | estion | S | | , | iviax | . įviai | KS: | 100 | | | | | | | | | | •• | | | | | PAR | .'- A | | | | (10 | U X 2 | = 20 | Mar | ·KS) | | | 1. What are the major levels of abstraction | in the e | embed | ded d | esign | proc | ess. | | | | | | 2. Write the ARM assembly language prog | ram to | imple | ment | the C | prog | gram: | : | | | | | if $(x<3)$ { $a = b*c$;
} else { $a = a + (b*c)$; | | | | | | | | | | | | else $\{ a = a + (b*c); \}$ | | | | | | | | | | | | 3. Draw the UML state diagram of a bus br | idge oj | peratio | n. | | | | | | | | | 4. What is a "symbol table" and how it is b | uilt? | | | | | | | | | | | 5. Draw the CDFG for the following code: | ragme | nt: | | | | | | | | | | for(i=0, f=0; i <n; i++)<br="">f = f + c[i]*x[i];</n;> | | | | | | | | | | | | 6. Differentiate between a reentrant program example for each. | n and a | a non 1 | eentr | ant p | rogra | m wi | ith an | l | | | | 7. Write the equation for computing the tot is used. | al spee | dup S | for a | kerne | l wh | en an | acce | elerat | or | | | 8. Bring out the difference between fixed-p | riority | arbitra | ation a | and fa | air ar | bitrat | tion. | | | | | 9. Draw the UML class diagram for the sof | tware i | noden | 1. | | | | | | | | | 10. What is meant by "feature creep"? | | | | | | | | | | | | PAR | T-B | | | | (5 | x 16 | = 80 | Mar | ks) | | | 11.(i) With neat sketches, explain in detail associative cache.(ii) How could the pipeline throughput e example ARM language program. | | | | | | | | | (8)
(8) | | | 12.(a)(i) Briefly explain the three important example for each.(ii) With neat sketches, explain the op | • | of tou | | | nique | es wi | th an | | 10)
(6) | | | | | | | | | | | $(\mathbf{I} \cdot \mathbf{I})$ | $\cdot \mathbf{U}$ | | | 12.(b)(i) With an example, explain flow testing in detail. | the domain testing for a pa | ir of variables and the data (10) | | | | | | |---|-------------------------------|-----------------------------------|--|--|--|--|--| | (ii) For the basic block given block draw the DFG for that form | | ` , | | | | | | | x = a + b; | | | | | | | | | y = c + d; | • | | | | | | | | z = x + e; | | (6) | | | | | | | 13.(a)(i) Schedule the process giver scheduling policy. Comput common multiple of the pe | te the schedule for an interv | val equal to the least- | | | | | | | Process | Execution Time | Period | | | | | | | P1 | 1 | 3 | | | | | | | P2 | 1 | 4 | | | | | | | P3 | 2 | 5 | | | | | | | | | (10) | | | | | | | (ii) Write a brief note on preemptive multitasking. (6) | | | | | | | | | | (OR) | | | | | | | | 13.(b)(i) What is the need to optimize the power for a process?. Explain the L-shaped usage distribution and the Advanced Configuration and Power Interface (ACPI) in detail. (8) (ii) With neat sketches, explain why does the critical timing race occurs in shared memory communication and also suggest the methods to avoid the race condition. (8) | | | | | | | | | 14.(a)(i) With neat sketches, briefly explain the typical bus transactions that take place on the I²C bus. (ii) With a block diagram, briefly explain how the CPU cache can cause problems for an accelerator and also suggest a technique by which the problem could be overcome. (8) | | | | | | | | | | (OR) | | | | | | | | 14.(b)(i) With neat sketches, explain about the Ethernet and also bring out the difference | | | | | | | | | between Ethernet and Myrinet. (8) | | | | | | | | | (ii) With an example, explain how does a single threaded control and multithreaded | | | | | | | | | control of an accelerator will affect the speedup factor. (8) | | | | | | | | | 15.(a)(i) Write a brief note on "System on Silicon". (ii) With neat block diagrams, explain the hardware architecture and software architecture of a set-top box. (OR) | | | | | | | | | 15.(b) With neat sketches, explain the | ` , | nnressor based on | | | | | | | Huffman coding principle. A example. | • | - | | | | | | | | | | | | | | |