Register Numb	er 🗀		T :							
B.E/B.Tech (Full Time) DEGREE END SEMESTER EXAMINATIONS, APRIL/MAY 2011 ELECTRONICS AND COMMUNICATION ENGINEERING BRANCH SIXTH SEMESTER										
EC 9078 -EMBEDDED A	ND R	EAL T	ΓIME	SYS			. Maı	elea • ·	100	
Duration: 3 Hrs Answer A	LL Ou	estion	S		,	iviax	. įviai	KS:	100	
							••			
PAR	.'- A				(10	U X 2	= 20	Mar	·KS)	
1. What are the major levels of abstraction	in the e	embed	ded d	esign	proc	ess.				
2. Write the ARM assembly language prog	ram to	imple	ment	the C	prog	gram:	:			
if $(x<3)$ { $a = b*c$; } else { $a = a + (b*c)$;										
else $\{ a = a + (b*c); \}$										
3. Draw the UML state diagram of a bus br	idge oj	peratio	n.							
4. What is a "symbol table" and how it is b	uilt?									
5. Draw the CDFG for the following code:	ragme	nt:								
for(i=0, f=0; i <n; i++)<br="">f = f + c[i]*x[i];</n;>										
6. Differentiate between a reentrant program example for each.	n and a	a non 1	eentr	ant p	rogra	m wi	ith an	l		
7. Write the equation for computing the tot is used.	al spee	dup S	for a	kerne	l wh	en an	acce	elerat	or	
8. Bring out the difference between fixed-p	riority	arbitra	ation a	and fa	air ar	bitrat	tion.			
9. Draw the UML class diagram for the sof	tware i	noden	1.							
10. What is meant by "feature creep"?										
PAR	T-B				(5	x 16	= 80	Mar	ks)	
11.(i) With neat sketches, explain in detail associative cache.(ii) How could the pipeline throughput e example ARM language program.									(8) (8)	
12.(a)(i) Briefly explain the three important example for each.(ii) With neat sketches, explain the op	•	of tou			nique	es wi	th an		10) (6)	
								$(\mathbf{I} \cdot \mathbf{I})$	$\cdot \mathbf{U}$	

12.(b)(i) With an example, explain flow testing in detail.	the domain testing for a pa	ir of variables and the data (10)					
(ii) For the basic block given block draw the DFG for that form		` ,					
x = a + b;							
y = c + d;	•						
z = x + e;		(6)					
13.(a)(i) Schedule the process giver scheduling policy. Comput common multiple of the pe	te the schedule for an interv	val equal to the least-					
Process	Execution Time	Period					
P1	1	3					
P2	1	4					
P3	2	5					
		(10)					
(ii) Write a brief note on preemptive multitasking. (6)							
	(OR)						
 13.(b)(i) What is the need to optimize the power for a process?. Explain the L-shaped usage distribution and the Advanced Configuration and Power Interface (ACPI) in detail. (8) (ii) With neat sketches, explain why does the critical timing race occurs in shared memory communication and also suggest the methods to avoid the race condition. (8) 							
 14.(a)(i) With neat sketches, briefly explain the typical bus transactions that take place on the I²C bus. (ii) With a block diagram, briefly explain how the CPU cache can cause problems for an accelerator and also suggest a technique by which the problem could be overcome. (8) 							
	(OR)						
14.(b)(i) With neat sketches, explain about the Ethernet and also bring out the difference							
between Ethernet and Myrinet. (8)							
(ii) With an example, explain how does a single threaded control and multithreaded							
control of an accelerator will affect the speedup factor. (8)							
15.(a)(i) Write a brief note on "System on Silicon". (ii) With neat block diagrams, explain the hardware architecture and software architecture of a set-top box. (OR)							
15.(b) With neat sketches, explain the	` ,	nnressor based on					
Huffman coding principle. A example.	•	-					