	 	 			_	
Roll NO			•			

B.E. / B.Tech. (Part Time) DEGREE END SEMESTER EXAMINATIONS, APRIL / MAY 2014 ELECTRONICS AND COMMUNICATION ENGINEERING BRANCH

Sixth Semester

PTEC9255 - COMPUTER ARCHITECTURE AND ORGANIZATION

(Regulations:2009)

				(g	
	Durat	ion: 3	Hrs.	Ma	ximum Marks 100
				Answer All Questions	
				Part A	$10 \times 2 = 20 \text{ Marks}.$
	1	Write	e down t	he IEEE 754 standard 32 bit floating point number format	
5	2	List	out few r	major register level component types	<i>5</i>
	3	Drav	v a full a	dder circuit using two level logic	
	4	Wha	t is guard	d bits? Where is it used?	
	5	List	out any t	wo advantages of hardwired control over micro-programmed	control
	6	Wha	t is supe	rscalar processing?	
	7	Wha	t are the	advantages of optical memories?	·
	8	List	out any f	our types of semiconductor memories	
	9	How	does mi	croprocessor responds to the DMA request and when is it ho	noured by the
		proce	essor?		
	10	List	out any f	Our differences between RISC and CISC processors	
				Part B 5	X 16 = 80 Marks.
	11		i)	Briefly explain different types of instruction formats with	an example
					(8 marks)
			ii)	List out different addressing modes available and give exa	mple (8 marks)
	12	a)		Explain modified booth algorithm and illustrate with an ex-	ample
				(or)	
		b)		How do you perform floating point addition? Illustrate wit	h an example and
				also explain how pipeline can be applied	
	13	a)	i)	What are the differences between classical and one hot me	thod? explain
					(4 marks)
			ii)	Illustrate and implement the Control unit of GCD processor	or using classical
				method	(12 marks)
				(or)	
		b)	i).	Briefly discuss about instruction pipeline	(6 Marks)

		ii)	Write in deta	il of nano-programming and its advantages and dis	advantages
			over micropr	ogramming	(10 marks)
14	a)	i)	List out diffe	rent ways to allocate the memory and explain each	one
					(8 marks)
		ii)	What are the	different replacement policy available and compar	e each one
					(8 marks)
				(or)	
	b)	i)	What is cach	e memory? How do you compare this memory with	n other
			memories?		(8 marks)
		ii)	Design a four	r way set associative cache with the following para	meters: the
			capacity of th	ne cache is 64KB; the cache block size is 32 B and	the width of
			the system da	ata bus is 32 bits	(8 marks)
15	a)	i)	Explain with	neat diagram the different types of bus arbitration	(8 marks)
		ii)	Write a short	notes on PCI interrupt and vector interrupts	(8 marks)
				(or)	
	b)		Briefly discu	ss the following	
			i)	Multiprocessors	(6 marks)
			ii)	Fault tolerance	(5 marks)
			iii)	Vector processor	(5 marks)

•