B.E/B.TECH (Full time) DEGREE END SEMESTER EXAMINATIONS April/May 2014

Electronics and Communication Engineering

Fifth semester

EC9304 Digital Signal processing

(REGULATION 2008)

Time: 3 Hour Max. Mark:100

Answer ALL Questions

Part-A(10X 2 = 20 Marks)

- 1. What do the coefficients of DFT represent for?.
- 2. What is the need for overlap-add & overlap-save method?
- 3. What are the specifications of a BPF?
- 4. What is the pole location of digital IIR filter?
- 5. What is special feature of an FIR filter?
- 6. Why do you apply window function?
- 7. Differentiate between truncation error and rounding error.
- 8. Why do you use DS processor?
- 9. Is multirate system a linear invariant system?
- 10. What are the factors to be considered for multirate signal processing?

PART-B (5 X 16 = Marks)

- 11 ii) Find the linear convolution of $x(n) = \{1,2,3,4,5,6,7,8\}$ and $h(n) = \{1,2,1\}$ using

overlap-save method.

(8)

- 12 a i) Derive the model order of a LPF using Butterworth polynomial.
- (8)
- ii) Realize the TF H(z) = $(0.7-0.252z^{-2})/(1+0.1z^{-1}-0.72z^{-2})$ using parallel structure. (8)

(OR)

12 b i) Prove that the bilinear transform method converts stable analog filter into	
always stable digital filter.	(12)
ii) How do you convert analog LPF to analog LPF, HPF, BSF,BPF?	(4)
13 a i) Explain in detail with an example the design of 7 th order HP FIR filter using	
Hamming window	(16)
(OR)	
b i) Draw the lattice structure of FIR filter $y(n)=2x(n)+0.8x(n-1)+1.5x(n-2)+.667x(n-3)$	(12)
ii) Draw the structure of FIR.	(4)
14 a i) Discuss the quantization noise power due to truncation and rounding.	(6)
ii) Explain limit cycle oscillation due to overflow.	(10)
(OR)	
b i) Draw a general DSP architecture of TMS 320C5xxx/TMS 320C6xxx and explain	
its operation.	(16)
15 a i) Explain decimation operation with an example.	(8)
ii) How do you implement decimation using polyphase decomposition? Explain.	(8)
(OR)	
b i) Explain interpolation operation with an example.	(8)
ii) How do you implement interpolation using polyphase decomposition. Explain.	(8)