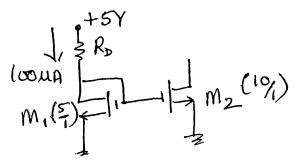
Roll No.	•				
KUII NU.		L			

B.E / B.Tech (Full Time) DEGREE END SEMESTER EXAMINATIONS, NOV / DEC 2012

Electronics and Communication Engineering III Semester EC9202 – Electronic Circuits I (Regulation 2009)

Time : 3 Hours

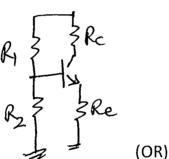
Answer ALL Questions


-Max. Marks 100

PART-A (10 x 2 = 20 Marks)

- 1. Define CMRR of a differential amplifier.
- 2. What is the design consideration that has to be met to maintain thermal stability of BJT self Bias circuit.
- 3. Write the drain Current expression of NMOS, operating in triode region.
- 4. Define the critical Voltages VIL and VIH of a Logic inverter.
- 5. A Common base amplifier has maximum gain of 125 and R_{in} is approximately equal to 26 Ω . Find the Value of R_c . [$R_L = \infty$ and $R_s = 0$]
- 6. Briefly write about class D power amplifier.
- 7. Draw CMOS Common drain amplifier with PMOS driver and depletion NMOS as active load.
- 8. Calculate the minimum Value of V_{DD} required to cause pinch off in the circuit shown. $I_{DSS} = 10$ mA and $V_{GS} = -4V$

- 9. In a CE amplifier , R_E =2K is fully bypassed with C_e =4.7µf. Calculate the lower cut –off frequency due to CE [Assume gian = 24.4 mA/V].
- 10. Find the current I_{D2} in the circuit shown.

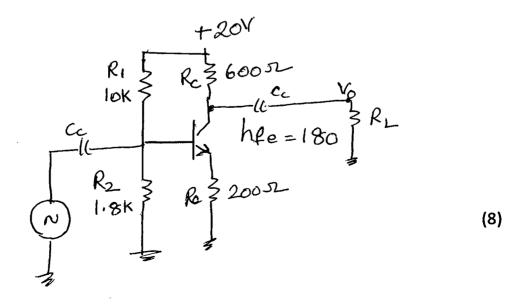

Part - B (5 x 16 = 80 marks)

- 11(i) Draw a Darlington amplifier and its equivalent circuit. Derive for A_{VS} , A_{IS} , R_{IN} and R_0 . (10)
 - (ii) Design a single stage CE amplifier with gain of -29 using Fixed Bias with $V_{CC} = 15v$ and $R_L = 10K$. & $I_{CQ} = 0.5mA$ and $h_{fe} = 100$ (6)

12(a)(i) Design the Circuit given : $I_C = 1.5 \text{ mA}$, $V_C = 4V$ and $h_{fe} = 100$

Z Z Re I-IOV

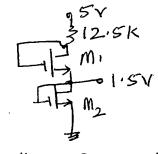
ii) For the biasing circuit shown , derive expressions for the stability factors
S , S' and S"


(b) (i) Explain circuits using diodes to compensate for the changes in I_{CO} and V_{BE}

(8)

(10)

(6)


(ii) For the Circuit given find the maximum peak to peak signal when $R_L = 1 \cdot 2 K$

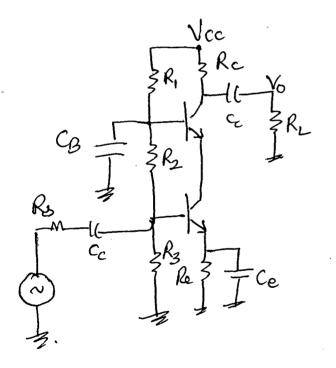
13 (a)(i) Draw a MOS differential amplifier with PMOS current source as active load and derive for its A_d and A_c with equivalent circuit. (10)
 (ii)Draw a Current steering circuit with one sink and one source terminal. Write the expressions for all the terminal currents in terms of the reference current. (6)

(OR)

- (b) (i) Draw a CMOS common source amplifier without feedback with NMOS driver and PMOS diode as active load (10)
 - with equivalent circuit of active load derive for its offered resistance
 - with equivalent circuit of driver ,derive for the Voltage gain.
 - ii) Calculate width of the devices M_1 and M_2 , Given $L_1 = L_2 = 1 \ \mu m$ and $I_D = 120 \ \mu A \ \mu_n c_o = 180 \ \mu A / V^2 \ V_{tn} = 1V$ and $\lambda = 0$ (6)

- 14(a) (i)Draw a discrete Common drain amplifier, with its equivalent Circuit derive for its A_V , R_{IN} and R_O . (8)
 - (ii) Draw the Voltage transfer curve of CMOS inverter function indicating the five regions of operation (4)
 - (iii) Determine the region of operation of CMOS inverter, when $V_{in} = 1.1 V$ justify your answer. Assume $V_{DD} = 2.5V$, $V_{tn} = 0.5$, $V_{tp} = -0.5$ (4)

(OR)


- (b) (i) With Voltage transfer Curve of NMOS inverter. Derive expressions for Noise margin in High and Low states.(8)
 - (ii) Design an NMOS inverter with maximum power dissipation = 0.5 mW $\mu_n c_o = 25 \ \mu\text{A/V}^2$ and $V_{DD} = 5\text{V}$. $V_T = 0.8\text{V}$. Draw the load line and mark the operating point in cut –off and triode regions. (8)

15(a) (i) Explain class B power amplifier and derive for its efficiency (10) (ii) Design a class A transformer coupled power amplifier to deliver ac power of 5 watts to a load of 300Ω at 30% efficiency. Find ac power across the load and power dissipation. Also draw the designed circuit. Assume V_{CC} =20V and h_{fe} = 60 (6)

(OR)

15.(b) (i)Define and derive for f_{α} and f_{β} .

(ii)For the Circuit shown calculate the midband gain and effective higher cut -off frequency. (8)

R _c =9K	hfe=100 (both Тяз)				
R _E =1K	hie =5.2k				
R ₁ =125K	Cb'e=35pf				
R ₂ =50K	Cb'c =4pf				
R ₃ =26K					
R _s =100Ω	(8)				
R_= 90K					

(8)