# B.E / B.Tech ( Part Time ) DEGREE END SEMESTER EXAMINATIONS, APRIL / MAY 2014

#### **ELECTRONICS AND COMMUNICATION ENGINEERING**

#### Semester III

#### **PTEC8301 Communication Theory**

(R 2013)

Time: 3 Hours

**Answer ALL Questions** 

Max. Marks 100

### PART-A (10 x 2 = 20 Marks)

- 1. Determine the Fourier transform and Hilbert Transform of Cos2t.
- 2. Give one commercial service that uses the VSB modulation technique. Justify the selection of VSB for that application.
- 3. An angle modulated signal is given as s(t)=20cos[2πf<sub>c</sub>t+4sin(200πt)]. Determine whether this is FM or PM signal. Explain.
- 4. Write the basic concept of stereo FM.
- 5. Justify that thermal noise can be modeled as Gaussian Noise.
- 6. A random stationary process X(t) has the power spectral density S(f). Determine the power spectral density of Y(t)=X(t)-X(t-T)
- 7. An AWGN of power spectral density 1  $\mu$ W is fed through a filter with frequency response H(f)=2/3; |f| < 50 kHz

= 0 : Elsewhere.

Calculate the noise power at the output of the filter.

- 8. Define the term noise equivalent temperature.
- 9. List the noises associated with the linear Delta Modulation process.
- 10. What is meant by non Uniform Quantization? Where is it required?

## Part - B (5 x 16 = 80 marks)

11. i) List the properties of Gaussian Process.

- (8)
- ii) The power spectral density of a random process X(t) is given in Figure 1. (8)
  - A. Determine the and sketch the auto correlation function  $R_x(t)$  of X(t).
  - B. Determine the DC and AC power contained in X(t).



T

41.4.0

| 12. | a) | i) Explain the operation of envelope detector.                                                                                                                                                                                                                                                                                                                                                                                                  | (8)   |
|-----|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
|     |    | <ul> <li>ii) An AM signal is generated by modulating the carrier f<sub>c</sub>=90MHz by the sm(t)=sin3000πt+0.5cos1500πt. The AM signal s(t)=100[1+m(t)]cos 2πf<sub>c</sub>t is fect 50 Ω load.</li> <li>A. Determine the average power in the carrier and in the sidebands.</li> <li>B. Find the modulation index and peak power delivered to the load.</li> <li>C. Draw the spectrum of the message, carrier and modulated signal.</li> </ul> |       |
|     |    | O. Draw the spectrum of the message, carrier and modulated signal.                                                                                                                                                                                                                                                                                                                                                                              | (0)   |
|     | b) | <ul><li>(OR)</li><li>i) Explain the operation of super heterodyne receiver with neat block diagram.</li><li>Draw the time domain signal at the output of each block.</li></ul>                                                                                                                                                                                                                                                                  | (12)  |
|     |    | ii) What is meant by image frequency? How can we reduce it?                                                                                                                                                                                                                                                                                                                                                                                     | (4)   |
| 13. | a) | i) An angle modulated signal is given as $s(t)=20\cos[2\pi f_c t + 4\sin(200\pi t)]$ . Deter the average transmitted power, peak phase deviation, peak frequency deviation and the band width of transmission.                                                                                                                                                                                                                                  |       |
|     |    | ii) Explain the generation of FM signal in the direct method.                                                                                                                                                                                                                                                                                                                                                                                   | (8)   |
|     | b) | (OR) Explain the FM demodulation process using frequency discrimination process.                                                                                                                                                                                                                                                                                                                                                                |       |
| 14. | a) | Obtain the expression for the output power spectral density of the FM receive hence comment on the figure of merit of FM receiver.                                                                                                                                                                                                                                                                                                              | r and |
|     |    | (OR)                                                                                                                                                                                                                                                                                                                                                                                                                                            |       |
|     | b) | i) Explain the role of pre emphasis and de emphasis in the FM communication system. Draw the frequency response of both the filters.                                                                                                                                                                                                                                                                                                            | (10)  |
|     |    | ii) An amplifier is defined of three stages with gain 50 dB, 23 dB and 15 dB. The noise figures of the stages are 7 dB, 13 dB and 12 dB respectively. Determine overall noise figure and the noise equivalent temperature.                                                                                                                                                                                                                      |       |
| 15. | a) | With neat block diagram explain the PCM system in detail.                                                                                                                                                                                                                                                                                                                                                                                       |       |
|     |    | (OR)                                                                                                                                                                                                                                                                                                                                                                                                                                            |       |
|     | b) | i) Describe Frequency Division Multiplexing scheme with a typical example.                                                                                                                                                                                                                                                                                                                                                                      | (8)   |
|     |    | ii) Explain the DPCM scheme with neat block diagram.                                                                                                                                                                                                                                                                                                                                                                                            | (8)   |
|     |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                 |       |
|     |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                 |       |
|     |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                 |       |