	F ' I		- 1	1		[1		
	1 1	1				1				
	, ,	J				1 :	í			
D - 11 A1 -	1									1
Roll No.	1 1			1		l				1
,	1 1					} .			1	1 1

B.E / B.Tech (PartTime) DEGREE END SEMESTER EXAMINATIONS, APRIL / MAY 2014

ELECTRONICS AND COMMUNICATION ENGINEERING

Semester II

PTEC8201Digital Electronics and System design /

(R 2013)

Time: 3 Hours

Answer ALL Questions

Max. Marks 100

PART-A (10 \times 2 = 20 Marks)

- Convert 101.101 to binary number system
- 2. Express the Boolean function F=A'+BC as sum of minterms.
- Realize Full adder using two half adders.
- 4. Compare PLA with PAL.
- 5. State the difference between Moore and Mealy state machines.
- 6. Draw the Truth table and Excitation table of JK Flip Flop.
- 7. What is meant by stable state in asynchronous sequential circuits?
- 8. Illustrate the advantages of Asynchronous sequential circuits over synchronous sequential circuits.
- 9. Draw the logic circuit of a basic RAM cell.
- 10. State the differences between SRAM and DRAM.

Part – B ($5 \times 16 = 80 \text{ marks}$)

- i) Obtain the reduced primitive flow table in the design of a latch circuit with two inputs D and G and an output Q. Output Q will be equal to input D when G=1 and retains this value after G goes to 0.Once G=0, a change in D does not change the value of the output Q. (10)
 - ii) Describe the hazards in the combinational and sequential logic circuits. (6)
- 12. a) i) Simplify the Boolean function using K Map. $Y(A,B,C,D,E)=\sum (1,2,5,6,7,10,12,13,14,28,29,30,31)$ Don't care conditions d(8,17,18,24,27) (10)
 - ii) Realize the resulting simplified function from Q.12.a.(i) using only NAND gate. (6)
 - b) i)Simplify the Boolean function using Tabular minimization method. $F(A,B,C,D,E) = \sum (0,2,4,5,6,7,8,10,14,17,18,21,29,31)$ (12)

- ii) Design a binary to octal code converter. (4)
- 13. a) i) What is an encoder circuit and discuss the problem associated with it. (4)
 - ii) Design a 4 bit priority encoder and implement it using AND -OR logic gates. Consider the inputs with the increasing priority from D_0 , D_1 , D_2 and D_3 . (12)

(OR)

- b) i) Design a 4 bit binary parallel adder. Discuss the drawback associated with it and then design a circuit which can overcome the drawback.
- 14. a) i) Design a Clocked sequential Counter circuit whose output goes from 0,2,4,6,8,10,12,14,0....Use T flip flops for the design. (16)

(OR)

b) i) Reduce the following state table and draw the reduced state diagram. (8)

Presen	Next	state	Output		
t state	x=0	x=1	x=0	x=1	
a	f	b	0	0	
b	d	С	0	0	
С	f	e	0	0	
d	g_	a	1_	0	
е	d	С	0	0	
f	f	ь	1	1	
g	g	h	0	1	
h	g	a	1	0	

- ii) Draw the logic circuit of switch tail ring counter. What is the significant advantage of it over ring counter? (8)
- 15. a) i)Draw and explain the 2 input NAND gate in open collector and Totem pole TTL logic family. (12)
 - ii) Compare the Noise margin, Fan out and Propagation delay characteristics of TTL logic family gates with that of CMOS logic family.

(OR)

- b) i) Draw and explain the 2 input NAND and NOR gate circuits in CMOS logic family. (10)
 - ii) Explain the Address multiplexing scheme for 64K DRAM. (6)