Roll Number:

B. E. / B.Tech. (FT) DEGREE END SEMESTER EXAMINATIONS, APRIL / MAY 2014

COMPUTER SCIENCE AND ENGINEERING

II SEMESTER

CS 8201 DIGITAL PRINCIPLES AND SYSTEM DESIGN

(Regulation 2012)

Time: Three Hours

Answer <u>All</u> Questions

Max. Marks: 100

PART - A (10 X 2 = 20 Marks)

- 1. Convert the hex number F3A2 to binary and octal.
- 2. Show that the excess -3 code is self complementing.
- 3. Is the NAND function associative? Justify.
- 4. The main stairway in a block of flats has three switches for controlling the lights. Switch A is located at the top of the stairs, switch B is located halfway up the stairs and switch C is positioned at the bottom of the stairs. Design a combinational circuit to control the lights on the staircase.
- 5. Give the HDL description of a positive edge triggered JK flip flop.
- 6. Show how timing signals can be generated using a binary counter and a decoder.
- 7. What is an essential hazard?
- 8. Comment on the circuit whose transition table is shown below:

	X ₁ X ₂					
	00	01	11	10		
00	00	11	01	00		
01	00	01	00	01		
11	01	11	10	11		
10	10	11	01	10		

- 9. What is an FPGA?
- 10. Differentiate between a PLA and a PAL.

PART- B (5 x 16 = 80 Marks)

11. (i) Simplify $F(A,B,C,D) = \sum (1,2,3,5,6,7,10,11)$, $d(A,B,C,D) = \sum (9,12,15)$ using Karnaugh map. Draw the logic diagram using NAND gates only. (8)

- (ii) Simplify the Boolean expression F (A, B, C, D) = B+BCD+B'CD+AB+A'B+B'C.
 Indicate the theorems used.
 (4)
- (iii) Express the following function as a sum of minterms and as a product of maxterms: F (A,B,C,D) = B'D+A'D+BD.
 (4)
- 12. a) (i) Discuss the principle of operation of carry-look ahead adders. (10) Design a 4-bit carry-look ahead adder and draw the circuit. Calculate the delay for generating s_3 and c_4 .
 - (ii) Design a 3x3 binary multiplier circuit.

(OR)

- b) (i) Design a four-input priority encoder with the D₀ input having the highest priority and the D₃ input having the least priority. (10)
 - (ii) Write a Verilog HDL model for the priority encoder given above. (6)

(6)

- 13. a) (i) Design a counter with the following repeated binary sequence: 0, 1, 3, 5, 7, 0, Use J-K flip flops. (10)
 - (ii) Draw the circuit of a four-bit universal shift register and discuss its operation. (6)

(OR)

- b) (i) Discuss the design of a 4-bit up/down binary ripple counter using T flip flops. (10)
 - (ii) Reduce the number of states in the following state table and tabulate the state table:

Present	Next state		Output	
state	x=0	x=1	x=0	x=1
а	f	b	0	0
b	d	С	0	0
С	f	е	0	0
d	g	а	1	0
е	d	С	0	0
f	f	b	1	1
g	g	h	0	1
h	g	а	1	0

Starting from state *a* and the input sequence 01100010001, determine the output sequence for the original state table and the reduced state table. Compare the results. (6)

- 14. a) For the two-input, two-output system, whose primitive flow table is shown below, perform the following: (4+2+2+2+6)
 - Merge the flow table by finding all compatible pairs using an implication table
 - Find the maximal compatibles through a merger diagram
 - · Find the minimal set of compatibles that covers all the states and is closed

Do a race-free state assignment

• Design the circuit

	X ₁ X ₂					
	00	01	11	10		
1	1/00	2/00	- /	7/00		
2	1/00	2/00	5/- 0	-/		
3	1/-0	3/10	5/10	-/		
4	1/0-	4/01	6/01	_/		
5	-/	3/10	5/10	8/10		
6	-/	4/01	6/01	9/01		
7	1/00	-/	6/0-	7/00		
8	1/-0	-/	5/10	8/10 ·		
9	1/0-	-/	6/01	9/01		

(OR)

b) (i) An asynchronous sequential circuit is described by the excitation function $Y = x_1x_2' + (x_1 + x_2')y$ and the output function z = y.

Draw the logic diagram of the circuit. (2) Derive the transition table and output map. (4) Obtain a flow table for the circuit. (2) Describe the behavior of the circuit. (2)

(ii) What is a static hazard? Discuss with examples.
 Find a circuit that has no static hazards and implements the Boolean function
 F (A,B,C,D) = ∑(3,4,5,6,11,12,13,14,15)
 (6)

15. a) (i) Give the logic diagram of a basic RAM cell and discuss.
 Show how a 64K X 8 RAM can be constructed, indicating all the connections and the decoding logic required. Use two-dimensional decoding. (10)

(ii) A 12-bit Hamming code word containing 8 bits of data and 4 parity bits is read from memory. What was the original 8-bit data word that was written into memory, if the 12-bit word read out is as follows:
 (6)

- 1. 000011101010 2. 101110000110
- 2. 101110000110

(OR)

- b) (i) Discuss the construction of a typical ROM. (10)
 What are the different types of ROM?
 Show how a ROM can be used to implement a combinational circuit that finds the nine's complement of a BCD digit.
 - (ii) Show how the following functions can be implemented using a PLA: (6) F1 (A,B,C,D) = $\sum 2,3,6,7,11,15$ and F2 (A,B,C,D) = $\sum 0,2,4,6,8,9,11,12,13,15$
