Code: 051606

B.Tech 5th Semester Exam., 2015

DESIGN AND ANALYSIS OF ALGORITHMS

Time: 3 hours

Full Marks: 70

Instructions:

- (i) The questions are of equal value.
- (ii) There are NINE questions in this paper.
- (iii) Attempt FIVE questions in all.
- (iv) Question No. 1 is compulsory.
- Choose the correct answer from the following (any seven):
 - (a) What is the worst case complexity of bubble sort?
 - (i) O(1)
 - (ii) $O(\log_2 n)$
 - (iii) O(n)
 - (iv) $O(n^2)$
 - (b) Suppose that a graph $G = (V \cdot E)$ is implemented using the adjacency lists, what is the complexity of a BFS algorithm of G?
 - (i) $O(V^2)$
 - (ii) $O(V \cdot E)$
 - (iii) $O(V^2 \cdot E)$
 - (iv) O(V+E)

- (c) The running time of quick-sort largely depends on
 - (i) no. of inputs
 - (ii) selection of pivot element
 - (iii) size of element
 - (iv) arrangement of element
- (d) Prim's algorithm based on
 - (i) greedy
 - (ii) divide and conquer
 - (iii) dynamic programming
 - (iv) graph algorithm
- (e) Travelling salesperson problem is example of
 - (i) dynamic
 - (ii) greedy
 - (iii) divide and conquer
 - (iv) graph
- (f) Time complexity of Kruskal's algorithm is
 - (i) $O(V^2)$
 - (ii) $O(V^3)$
 - (iii) O(V+E)
 - (iv) $O(E \log E)$

- (g) The time complexity of Dijkstra's algorithm is
 - (i) O(n)
 - (ii) $O(\log_2 n)$
 - (iii) $O(n^2)$
 - (iv) None of the above
- (h) How many distinct MST of an undirected graph of 5 nodes can you obtain?
 - (i) 5
 - (ii) 20
 - (iii) 10
 - (iv) Depend on the graph
- (i) Strassen's matrix multiplication complexity is
 - (i) $O(n^3)$
 - (ii) $O(n^2)$
 - (iii) $O(n^{2.81})$
 - (iv) None of the above
- (i) All-pair shortest path complexity is
 - $O(n^3)$
 - (ii) $O(n^2)$
 - (iii) O(n)
 - (iv) None of the above

- 2. (a) Write the algorithm for quick-sort and find its complexity.
 - Discuss the Strassen's matrix multiplication approach.
- 3. (a) Write the algorithm for Kruskal's algorithm.
 - (b) Apply Prim's algorithm to find the MST:

4. (a) Find the all-pair shortest path for the following:

(b) Discuss the knapsack problem using dynamic programming.

- (a) Write an algorithm for randomized quick-sort.
 - (b) Discuss its time complexity.
- 6. (a) Write DFS algorithm.
 - (b) Apply DFS for the following graph:

- 7. (a) Discuss the single-source shortest path algorithm.
 - (b) What do you mean by strongly connected components? Explain with an example.
- 8. (a) Explain the classes NP-hard and
 - (b) Find the time complexity of the following:

$$T(n) = 7T\left(\frac{n}{2}\right) + 18n^2$$

- (a) Discuss the average, worst, best time complexity of the algorithm. Give suitable examples.
 - (b) Write and discuss the selection sort algorithm.

* * *