Code: 041402

B.Tech. 4th Semester Exam., 2014

DIGITAL ELECTRONICS

Time: 3 hours

Full Marks: 70

Instructions:

- (i) The marks are indicated in the right-hand margin.
- (ii) There are NINE questions in this paper.
- (iii) Attempt FIVE questions in all.
- (iv) Question No. 1 is compulsory.
- 1. Choose the correct option from the following (any seven): 2×7=14
 - (a) A quantity having continuous wave is
 - (i) a digital quantity
 - (ii) an analog quantity
 - (iii) a binary quantity
 - (iv) a natural quantity
 - (b) The sum of 11010+01111 equals
 - (i) 101001
 - (ii) 101010·
 - (iii) 110101
 - (iv) 101000

- (c) The output of a gate is low if and only if its input are HIGH. It is true for
 - (i) AND
 - (ii) XNOR
 - (iii) NOR
 - (iv) NAND
- (d) An example of a standard SOP expression is
 - (i) $\overrightarrow{AB} + \overrightarrow{ABC} + \overrightarrow{ABD}$
 - (ii) ABC+ACD
 - (iii) $A\overline{B} + \overline{A}B + AB$
 - (iv) $AB\overline{C}D + \overline{A}B + \overline{A}$
- (e) To implement the expression of $\overline{ABCD} + A\overline{BCD} + A\overline{BCD}$, it takes one OR gate and
 - (i) one AND gate
 - (ii) three AND gates
 - (iii) three AND gates and four inverters
 - (iv) three AND gates and three inverters
- (f) The invalid state of an S-R latch occurs when
 - (i) S = 1, R = 0
 - (ii) S = 0, R = 1
 - Kii) S=1, R=1
 - (iv) S = 0, R = 0

(g)	The device used to convert a binary	
	number to a 7-segment display format	
	is	
	(i) multiplexer	
	(ii) encoder	
	(iii) decoder	
	(iv) register	
(h)	An asynchronous counter differs from a	
	synchronous counter in	
	(i) the number of states in its sequence	
	the method of clocking	
	(iii) the type of flip-flop used	
	(iv) the value of the modulus	
(4)	A stage in a shift register consists of	
	(i) a latch	**
	(ii) a flip-flop	
	(iii) a byte of storage	
	(iv) four bits of storage	
<i>(</i>)	A 32-bit data word consists of	
	(i) 2 bytes	
	(ii) 4 nibbles	•
	(iii) 4 bytes	
	(iv) 3 bits and 1 nibble	

```
Make a K-map for the function
          F = A\overline{B} + AC + A\overline{D} + AB + ABC
                                                      5
   (b) Express F, in standard SOP and POS
        form.
                                                      5
        Minimize \dot{F} and realize the minimal
        expression using NOR gate only.
   (a), Prove the following algebraically:
                                            21/2+21/2=5
         (1) (A+B)(A+\overline{B}) = A \oplus B
         (ii) (A+B)(A+\overline{B})(\overline{A}+B) = AB
        Convert decimal number 75 into Grey
         code.
        Verify a two-level AND-OR gate is
         equivalent to NAND-NAND.
4. (a) Draw a circuit diagram of an RTLEX-OR
         gate. Explain its operation.
        Draw a circuit diagram of DTL gate and
         explain it. What are fan-in and fan-out?
         How will you increase the fan-out of the
         gate?
```

5. (a) Design a full adder using only NAND gate.(b) Design a 8 to 1 line multiplexer using 4

to 1 line multiplexer.

6. (a) Differentiate between synchronous and asynchronous counter.

(b) Design a 4-bit synchronous up counter.

7. (a) Explain the following flip-flops with their diagrams and truth tables:

(i) SR F/F

(ii) J-K F/F

(iii) D F/F

(iv) T F/F

(b)—Design D F/F from J-K F/F.

- (a) Explain the working principle of a successive approximation ADC with the help of circuit diagram.
 - (b) Find the output voltage from a 5-bit ladder D/A converter which has a digital input of 11010. Assume 0 = 0 V and 1 = +10 V.

- 9. Write short notes on any two of the following: 7×2=14
 - (a) Data transfer in a shift register
 - (b) ROM
 - (c) Astable multivibrator using 555
 - (d) Digital comparator

14AK-1300/649

(Turn Over)

14AK-1300/649

Code: 041402