Time: 3 hours

Full Marks: 70

Instructions:

- (i) The marks are indicated in the right-hand margin.
- There are NINE questions in this paper.
- (iii) Attempt FIVE questions in all.
- (iv) Question No. 1 is compulsory.
- 1. Answer any seven of the following: 2×7=14
 - What are the salient features of hybrid parameters?
 - How is BJT different from JFET?
 - What is intermodulation distortion in amplifier?
 - Write down the transfer function of a simple RC low-pass circuit.
 - What is the primary function of a phase inverter circuit? Where is it required?
 - "Class C amplifier is a voltage-tuned amplifier." Justify.

What are the sources of thermal noise?

Why are power transistors provided with heat sinks?

2

- How are amplifiers classified based on (i) the biasing condition?
- Define stegger-tuned amplifier.
- 2. Draw the equivalent circuit for the CE (a) and CC configurations subject to the restriction that input is open-circuited. Show that output impedances of the two circuits are identical.
 - For a network shown in the figure below, determine r_e , Z_i , Z_o and A_v :

Draw the high-frequency π model of a transistor and explain it.

AK15-940/548

Continued ,

6

(b) Following low-frequency parameters are known for a given transistor at $I_C = 10$ mA, $V_{CE} = 10$ V and at room temperature:

$$h_{ie} = 500 \text{ ohms}, \quad h_{re} = 10^{-4}$$

 $h_{oe} = 4 \times 10^{-5} \text{ A/V}, \quad h_{fe} = 100$

At some operating point, $f_T = 50 \text{ MHz}$ and $C_{ob} = 3 \text{ pF}$. Compute the values of all the hybrid- π parameters.

8

8

6

- Discuss the analysis of emitter follower circuit at high frequencies.
 - In an amplifier, the output power is 1.5 W at 2 kHz and 0.3 W at 20 Hz, while the input power is constant at 10 mW. Determine by how many decibels the gain at 20 Hz is below that at 2 kHz.
 - 5. (a) Sketch the response of an amplifier to a low-frequency square wave. Define the term 'tilt'. How is the tilt related with the low 3 dB frequency f_L ?
 - (b) Three identical cascaded stages have an overall upper 3 dB frequency of 20 kHz and a lower 3 dB frequency of 20 Hz. What are f_L and f_H of each stage? Assume non-interacting stages.

- 6. (a) Explain how oscillations are initiated at switch on the system and latter sustained in RC and LC oscillators.
 - (b) Draw the RC phase-shift oscillator circuit using BJT and find the minimum gain required for oscillation and expression for oscillation frequency.
- 7. (a) Derive and explain the Friis transmission formula.
 - (b) Find the maximum effective area of a λ/2 wire dipole operating at 30 MHz. How much power is received with an incident plane wave of strength 2 mV/m?
- 8. (a) A tank circuit has a capacitor 100 pF and an inductor 100 μH. The resistance of the inductor is 5 Ω. Determine the resonant frequency, impedance at resonance, Q factor and bandwidth of this tank circuit.
 - (b) Show that the maximum conversion efficiency of a class B amplifier is 78.5%.
- 9. Write short notes on any two of the following: 7×2=14
 - (a) Cascade amplifier
 - (b) Bootstrapping in emitter follower
 - Ideal voltage and transresistance amplifiers

* * *

Code: 041404

8

7

AV15 040/540