Code : 041402

B.Tech. 4th Semester Exam., 2014

DIGITAL ELECTRONICS

Time : 3 hours
Full Marks : 70

Instructions :
(i) The marks are indicated in the right-hand margin.
(ii) There are NINE questions in this paper.
(iii) Attempt FIVE questions in all.
(iv) Question No. 1 is compulsory.

1. Choose the correct option from the following
 (any seven) : 2×7=14

 (a) A quantity having continuous wave is
 (i) a digital quantity
 (ii) an analog quantity
 (iii) a binary quantity
 (iv) a natural quantity

 (b) The sum of 11010+01111 equals
 (i) 101001
 (ii) 101010
 (iii) 110101
 (iv) 101000

 (c) The output of a gate is low if and only if
 its input are HIGH. It is true for
 (i) AND
 (ii) XNOR
 (iii) NOR
 (iv) NAND

 (d) An example of a standard SOP
 expression is
 (i) \(\overline{AB} + \overline{A}BC + \overline{AB}D \)
 (ii) \(\overline{A}BC + ACD \)
 (iii) \(A \overline{B} + \overline{A}B + AB \)
 (iv) \(ABCD + \overline{AB} + \overline{A} \)

 (e) To implement the expression of
 \(ABCD + \overline{ABCD} + \overline{ABCD} \), it takes one OR
 gate and
 (i) one AND gate
 (ii) three AND gates
 (iii) three AND gates and four inverters
 (iv) three AND gates and three inverters

 (f) The invalid state of an S-R latch occurs
 when
 (i) \(S = 1, R = 0 \)
 (ii) \(S = 0, R = 1 \)
 (iii) \(S = 1, R = 1 \)
 (iv) \(S = 0, R = 0 \)

 (Continued)
(g) The device used to convert a binary number to a 7-segment display format is
 (i) multiplexer
 (ii) encoder
 (iii) decoder
 (iv) register

(h) An asynchronous counter differs from a synchronous counter in
 (i) the number of states in its sequence
 (ii) the method of clocking
 (iii) the type of flip-flop used
 (iv) the value of the modulus

(i) A stage in a shift register consists of
 (i) a latch
 (ii) a flip-flop
 (iii) a byte of storage
 (iv) four bits of storage

(j) A 32-bit data word consists of
 (i) 2 bytes
 (ii) 4 nibbles
 (iii) 4 bytes
 (iv) 3 bits and 1 nibble

2. (a) Make a K-map for the function
 \[F = A\bar{B} + AC + A\bar{D} + AB + ABC \]

 (b) Express \(F \) in standard SOP and POS form.

 (c) Minimize \(F \) and realize the minimal expression using NOR gate only.

3. (a) Prove the following algebraically:
 \[2^{1/2} + 2^{1/2} = 5 \]
 \[(A + B)(A + \bar{B}) = A \oplus B \]
 \[(A + B)(A + \bar{B})(\bar{A} + B) = AB \]

 (b) Convert decimal number 75 into Grey code.

 (c) Verify a two-level AND-OR gate is equivalent to NAND-NAND.

4. (a) Draw a circuit diagram of an RTLEX-OR gate. Explain its operation.

 (b) Draw a circuit diagram of DTI and explain it. What are fan-in and fan-out? How will you increase the fan-out of the gate?
5. (a) Design a full adder using only NAND gate.

(b) Design a 8 to 1 line multiplexer using 4 to 1 line multiplexer.

6. (a) Differentiate between synchronous and asynchronous counter.

(b) Design a 4-bit synchronous up counter.

7. (a) Explain the following flip-flops with their diagrams and truth tables:

(i) SR F/F
(ii) J-K F/F
(iii) D F/F
(iv) T F/F

(b) Design D F/F from J-K F/F.

8. (a) Explain the working principle of a successive approximation ADC with the help of circuit diagram.

(b) Find the output voltage from a 5-bit ladder D/A converter which has a digital input of 11010. Assume 0 = 0 V and 1 = +10 V.

9. Write short notes on any two of the following:

(a) Data transfer in a shift register
(b) ROM
(c) Astable multivibrator using 555
(d) Digital comparator

14AK-1300/649
(Turn Over)